Если продлить время нашего наблюдения за 59 водителями до 13-месячного периода, мы получим распределение, показанное на графике 20Е. Хотя на нем представлено несколько незначительных отклонений, данное распределение, естественно, не является J-кривой, его пик приходится приблизительно на центр ряда значений. С удлинением периода наблюдения общее число аварий в нашей выборке из 59 человек увеличивается, и, следовательно, распределение становится все менее скошенным. Последней иллюстрацией специальных факторов, которые могут повлиять на форму графика распределения, являются
Наиболее достоверным объяснением такого отклонения от нормы является ссылка на вторичные факторы, такие как заболевания, ненормальные условия жизни или большее число, по сравнению с ожидаемым, доли слабоумных детей (ср., например, 22). Напомним, что нормальное распределение получается тогда, когда измерение некоей переменной представляет собой совокупный результат очень большого числа измерений независимых и в равной степени значимых факторов. Рассматривая чрезвычайно большое число как наследственных факторов, так и факторов среды, влияющих на развитие умственных способностей в общей популяции, разумно ожидать распределения IQ в соответствии с нормальным графиком. Некоторые формы умственной отсталости, такие как дебильность, появляются, скорее в результате действия какого-либо единичного фактора, чем множественных факторов. Иными словами, некоторые патологические условия, развивающиеся под воздействием наследственности и среды, при прочих равных обстоятельствах могут быть непосредственной причиной возрастания числа случаев умственной отсталости. Поэтому на отрезке низких значений графика распределения эти единичные факторы суммируются с множественными факторами, вероятными при нормальном распределении.
Попутно дополним, что имеющиеся данные по отрезку низких значений графика распределения интеллектуального уровня, так же как и интерпретация этих данных, носят пока в основном предварительный характер. Мы привели их здесь лишь для того, чтобы проиллюстрировать возможные следствия действия патологических условий, «наложенных» на форму графика распределения.
Подытожим сказанное: если мы исходим из ожидания, что графики распределений будут в целом похожи на нормальный график, любое отклонение от нормы становится проблемой для исследования. Такой подход к форме распределения весьма плодотворен для раскрытия механизма действия различных факторов. Например, существенное отклонение от нормы может означать, что высшие значения теста занижены, а его нулевая отметка завышена или что вопросы теста не соответствуют отрезку определенной сложности. Кроме этого, могут стать очевидными некоторые факторы, которые до недавнего времени скрыто воздействовали на изучаемую выборку. И наконец, форма полученного распределения может послужить ключом к раскрытию того существенного влияния, которое вместе с изменением графика распределения изменяет само качество. Иными словами, любое существенное отклонение от нормы должно настораживать исследователя и побуждать его к дальнейшим исследованиям.
Кроме вопроса, связанного с формой графика распределения, встает вопрос о степени различий между индивидами. Насколько велики индивидуальные различия? Очевидно, что ответ лежит в промежутке между самыми высокими и самыми низкими результирующими значениями