Вероятнее всего, что на практике исследователь будет создавать репрезентативную выборку, утверждая, что состав его группы соответствует составу всей популяции 8-летних мальчиков, учитывая такие факторы, как соотношение живущих в городе и сельской местности, соотношение проживающих в разных районах страны, социоэкономический уровень, тип школы и т.п. В любом случае значение роста у членов выборки может быть лишь сугубо приблизительным по отношению к значению, характеризующему всю популяцию, они не могут быть тождественны. Если повторить эксперимент и набрать новую группу из 500 8-летних американских мальчиков, то полученное значение их роста будет так же отличаться от значения, полученного в первой группе. Именно эти случайные отклонения составляют то, что известно как «ошибка выборки».
Существует еще одна причина, по которой случайные отклонения могут влиять на наши результаты. Если мы измерим скорость бега группы детей, а затем повторим эти измерения в той же группе на следующий день, то, вероятно, получим несколько иные результаты. Может случиться так, что некоторые дети, которые были усталыми во время забега в первый день, обрели спортивную форму во время забега во второй день. В случае неоднократного повтора забегов и измерений скорости бега случайные отклонения будут представлять собой некое усредненное значение. Но результаты измерений в каждый отдельный день могут быть и очень высокими, и очень низкими. В этом случае мы можем рассматривать их в каждый отдельный день как то, что в совокупности составляет «популяцию» измерений, которые можно сделать в одной и той же группе.
Оба типа случайных отклонений могут оцениваться посредством применения измерения
Одна из наиболее общих проблем достоверности измерений в дифференциальной психологии связана с тем, насколько существенна разница между двумя полученными значениями. Достаточно ли она велика, чтобы считаться выходящей за пределы вероятностных границ случайных отклонений? Если ответ положительный, то можно сделать вывод, что разница статистически существенна.
Предположим, что по результатам вербального теста на сообразительность, показатель у женщин в среднем на 8 пунктов выше, чем показатель у мужчин. Чтобы оценить, насколько существенна эта разница, мы вычисляем уровень статистической значимости. Анализируя специальную таблицу, мы сможем увидеть, может ли быть случайной вероятность того, что результирующие значения одной группы превышают результирующие значения другой группы на 8 пунктов и более. Предположим, мы обнаружили, что эта вероятность, обозначаемая буквой
Другой проблемой, для решения которой нам требуется соотношение со значением
Это относится и к двукратному тестированию тех же самых людей — до и после эксперимента, такого, например, как специальная программа подготовки. В этом случае мы также должны знать, насколько достигнутые результаты превышают ожидаемые случайные отклонения.