Читаем Дирак. Антивещество полностью

Дирак не первым использовал функцию δ, но он обобщил ее применение, превратив ее в главный инструмент развития квантовой теории. Функция δ(x) не является математической функцией в обычном смысле слова, это не функция, которая имеет определенные значения в каждой своей точке. Напротив, она принимает значение 0 при всех значениях х, кроме точки, где х = 0 и где она превращается в бесконечность. Дирак называл ее «несвойственной функцией», чтобы отличить от обычных функций и показать, что ее использование должно ограничиваться определенным типом проблем, с которыми она совместима. Физик заметил, что его несвойственная функция при х=0 не имеет четко определяемого значения, поскольку она появляется как часть интегрирования, результат которого является прекрасно определяемой величиной. Строгий анализ функции δ(x) представлен в теории распределений, развитой в 1945 году математиком Лораном Шварцем (1915-2002). Поведение функции δ(χ) показано на рисунке 1, где видно, что она равна нулю на всем интервале величин х за исключением маленькой окрестности δ(χ) в самом начале. В представленном интервале максимум функции равен 1/ε. Следовательно, функция

РИС. 1


охватываемой окрестности равна 1. Функция δ(x) появляется как предел функции, представленной на рисунке, когда величина параметра ε стремится к 0 (ε → 0). Множество других функций могут образовывать функцию δ(x). Например, ширина знаменитой гауссовой функции, представленной на рисунке 2, определяется коэффициентом σ. Если величина этого параметра уменьшается, функция сужается все больше и больше, значительно увеличивая свое максимальное значение. Для предела, в котором ширина стремится к нулю, максимальная величина стремится к бесконечности. Математически это выражается следующим образом:


Самое важное свойство функции Дирака выражается через следующий результат:

+∞

∫f(x)δ(x-a) = f(a),

-∞

в котором f(x) соответствует любой продолжающейся функции и а — любому действительному числу. Так, умножая функцию х на δ(x - a) и особенно интегрируя x, мы возвращаемся к вычислению функции f в точке х = а. Интервал интегрирования необязательно должен расширяться от -∞ до +∞, но до любой окрестности, где находится критическая точка, в которой функция δ не обнуляется. Функция δ Дирака остается сегодня важным инструментом во всех областях физики.

РИС. 2



«В квантовой теории невозможно ответить ни на один вопрос, который отсылает к двум численным показателям двух квантовых переменных р и q (положение и начальный момент)».


Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература