Поль Дирак
Физик осуществил первый расчет изменения заряда, связанного с наличием моря Дирака. Снова появились расходящиеся интегралы. Дирак решил проблему с помощью разных математических приемов, позволивших ему избежать расходящихся интегралов. Его способ лег в основу того, что позднее, в конце 1940-х годов, будет названо методом перенормировки (он подробно объяснен в следующем разделе данной главы).
Эти техники дали возможность переформулировать теорию квантовой электродинамики, превратив ее в самую точную физическую теорию.
Новая теория Дирака была принята довольно сдержанно и вызвала резкую критику со стороны его коллег. Паули находил идеи Дирака «искусственными, математически слишком сложными и лишенными физического смысла». Обычно сдержанный Гейзенберг высказался еще резче, расценив теорию как абсурдную. Понятие поляризации вакуума, введенное Дираком, однако закрепилось, и очень скоро другие ученые начали изучать этот эффект.
Сообщество физиков было озадачено и в основном испытывало чувство неудовлетворения. Сам Дирак становился все более скептичным, и по сути его мнение не отличалось от мнения Гейзенберга и Паули. Он попытался решить проблему бесконечных величин, используя сложные и «искусственные» математические техники, вопреки «математической красоте физики» (а следование ей было самым дорогим ему принципом). В последующие годы разочарование Дирака достигло такой степени, что он пошел еще дальше своих коллег в критике квантовой электродинамики.
Проблема результатов с бесконечными пределами и расходящихся интегралов уже появлялась в XIX веке в связи с электромагнитной теорией Максвелла. Электрически заряженная частица порождает вокруг себя поле, которое в свою очередь производит электромагнитную энергию, меняющую массу частицы («собственная энергия»). Эта энергия обратно пропорциональна расстоянию между положением заряженной частицы и положением, в котором вычисляется энергия поля. Трудность заключается в следующем: какую энергию производит электромагнитное поле, образованное частицей в ее собственном положении? Логически расстояние равно нулю, что влечет за собой результат в виде бесконечной величины. С классической точки зрения проблема решена, так как частица имеет определенную структуру и конечное расширение, поскольку заряд распределен по ее поверхности. Поэтому энергия, произведенная полем, обратно пропорциональна радиусу, определяющему расширение частицы.
В квантовой физике не допускается представление об электроне с пространственным расширением; напротив, электрон является элементарной частицей, без внутренней структуры. Квантовое описание электрического поля, образованного электроном, задано через испускание или поглощение виртуальных фотонов, существование которых вытекает из принципа неопределенности Гейзенберга. Этот процесс изображен на рисунке 1. Такие графики называются «диаграммами Фейнмана». В определенный момент электрон, представленный непрерывной линией, испускает фотон, который затем вновь поглощается самим электроном (траектория фотона соответствует волнистой линии). Расчет данного процесса (вычисление собственной энергии электрона) ведет к появлению расходящихся интегралов. Описанный процесс соответствует самому простому случаю, когда испускается и поглощается только один фотон. Но можно представить гораздо более сложные процессы, увеличивая количество вовлеченных виртуальных фотонов.
Сочетание принципа неопределенности и принципа эквивалентности массы и энергии является главным для понимания квантового вакуума. В квантовом вакууме непрерывно происходят квантовые колебания, которые могут привести к рождению виртуальных пар частица/античастица. Введенное Дираком понятие поляризации вакуума напрямую связано с этими виртуальными парами. Рассмотрим электрон, непрерывно испускающий и поглощающий виртуальные фотоны, которые в свою очередь могут приводить к рождению виртуальных пар электрон/позитрон. Позитроны стремятся приблизиться к физическому электрону, тогда как виртуальные электроны стремятся удалиться от них (см. рисунок 2).
Этот процесс тоже может быть показан через диаграммы. В результате видно, что заряд электрона частично нейтрализуется «облаком» окружающих его виртуальных позитронов (см. рисунок 3).