Читаем Диссертация рассеянного магистра полностью

И тут произошло нечто невероятное. В небе появились два огненных шара с такими же хвостами, как на шляпе Гортензии. Шары с бешеной скоростью понеслись навстречу друг другу, раздался взрыв, и… все исчезло в клубах пыли. А когда пыль рассеялась, я обнаружил, что Единичка исчезла. Самипонимаете, я так разволновался, что мне было не до размышлений. Поэтому я так и не понял: кто такая Ипатия, почему у одной Софи домик построен из пластин, а у другой комната оклеена страницами из учебника? И что это за нелепый головной убор у Гортензии? И при чём здесь вообще математика?!

Во всём этом разберусь когда-нибудь позже, а сейчас надо искать Единичку. Единичка, ау!..

ДЕВЯТОЕ ЗАСЕДАНИЕ КРМ

было последним (предыдущая глава диссертации обрывалась) и оттого несколько грустным. Сами того не замечая, все привязались к незадачливому Магистру. Конечно, он и фантазёр, и рассеянный, а в чём-то и просто недоучка. Но человек всё-таки добрый и симпатичный… Неужели мы никогда не узнаем, нашёл ли он Единичку и догнали ли они наконец неуловимого папу Минуса?

Олег довольно сурово призвал нас к порядку, а заодно и к разбору первой задачи о бусинках, которая, по его мнению, так проста, что её может решить даже Нулик. Это «даже» задело Нулика за живое, и он справился с задачей очень быстро.

— Если принять число жёлтых бусинок за единицу, — рассуждал Нулик, — то синих было в четыре раза больше, белых — в двенадцать раз, а красных в двадцать четыре раза больше, чем жёлтых. 1+4+12+24=41. Значит, всего частей 41: жёлтых бусинок 1/41 часть, синих — 4/41, белых — 12/41 и, наконец, красных — 24/41.

— Умница! — Таня погладила Нулика по голове. — Что бы Магистру и тут посоветоваться с тобой! Тогда бы он не принял за единицу число красных шариков, и всё было бы в порядке.

Президенту не терпелось перейти к следующему вопросу, но оказалось, что мы ещё не покончили с этим.

— Можно предположить, сколько всего бусинок было на доске, — сказал Олег. — Ведь доска квадратная, и лунки на ней расположены правильными рядами.

— Значит, число бусинок должно быть кратно 41 в квадрате, — догадалась Таня. — Иначе говоря, бусинок на доске было не менее 1681.

— Вот именно не менее, — согласился Нулик, — зато могло быть и более… Умножим 1681 на 4, потом на 9 и так далее…

— Ну, насчёт «и так далее» сомневаюсь, — возразил Олег. — Такая огромная доска едва ли уместилась бы в салоне подводной лодки… Но оставим это. Попробуем лучше решить сходную задачу, но чуточку посложней. Представьте себе, что бусинки были не четырех, а двадцати или даже ста цветов. При этом нам заранее известно, во сколько раз число бусинок любого цвета меньше (или больше) числа ну хотя бы красных. Как теперь вычислить, во сколько раз число красных бусинок меньше всех бусинок, вместе взятых? Побеждает тот, кто решит эту задачу самым коротким путём. Даю пять минут. Начали!

— Зачем так много? Хватит и двух, — сказала Таня. — Нам нужно узнать, во сколько раз число красных бусинок меньше общего числа всех бусинок. Запишем искомое так:

к/(к + б + с + ж +…+ з +…).

При этом в числителе у нас будет число красных бусинок, обозначенное буквой к, а в знаменателе — сумма всех бусинок: красных, белых, синих, жёлтых и так далее. Теперь разделим числитель и знаменатель на одно и то же число к, то есть на число красных бусинок. Величина дроби от этого не изменится, а вид у неё станет такой:

1/(к/к + б/к + с/к + ж/к +…+ з/к +…).

Но ведь теперь у нас в знаменателе оказались известные уже нам числовые отношения бусинок разных цветов к красным бусинкам! Остаётся только подставить вместо буквенных отношений заданные числа, ну хотя бы те, которые были в задаче Магистра, — и ответ готов.

— Проверим! — сказал Нулик.

— Пожалуйста, — разрешил я. — Только дома…


Таню приветствовали дружными аплодисментами, после чего под предводительством Севы мы покинули салон подводной лодки и вышли на палубу.

— Уверен, — сказал Сева, — что капитан не требовал, чтобы площадь квадратного сечения табуретки была тютелька в тютельку равна площади прежнего, круглого. Я читал в одной книжке, что такую задачу с помощью циркуля и линейки (пусть даже в придачу даётся пила) решить невозможно.

— Раз так, — сказал я, — значит, ты должен знать и то, что задача эта называется квадратурой круга. А квадратура круга — одна из знаменитых загадок древности. Учёные заинтересовались ею свыше 4000 лет назад. Но довести задачу до конца никто так и не смог. Квадратура круга в древние времена была настолько популярна, что тех, кто ею занимался, даже высмеивали в комедиях. Древнегреческий поэт и драматург Аристофан вывел такого горе-учёного в комедии «Птицы». Однако полное и окончательное доказательство невозможности квадратуры круга было найдено сравнительно недавно, в конце XIX века, немецким математиком Фердинандом Линдеманом. И доказательство это заключается в том…Однако, — спохватился я, взглянув на озабоченную физиономию Нулика, — всякому овощу своё время. А нам пора перейти на корму…


Перейти на страницу:

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки