В фантастическом богатстве форм корональной структуры убеждают нас ультрафиолетовые и рентгеновские изображения, вроде тех, что были получены на «Скайлэбе». Как мы уже видели, корона чрезвычайно горяча и по существу прозрачна для излучения в оптической области спектра; во время затмений мы смотрим на корону сбоку. Для того чтобы получить изображение анфас, нужно использовать рентгеновские лучи, так как ободранные до самых нижних электронных оболочек атомы в короне излучают главным образом в ультрафиолетовом и рентгеновском диапазонах. Эти ободранные атомы, называемые ионами, потеряли свои внешние электронные оболочки в раскаленной среде. Оставшиеся электроны совершают большие скачки между энергетическими уровнями атома, скачки, которые приводят к излучению больших порций энергии, в виде рентгеновских фотонов. Другим существенным фактором является то, что характер рентгеновского излучения весьма чувствительно зависит как от температуры, так и от электронной плотности; из обратного утверждения следует, что, построив изображение короны в рентгеновском диапазоне, мы сможем получить распределения температуры и плотности в короне. Действительно, интенсивность рентгеновского излучения определяется квадратом электронной плотности, тогда как интенсивность белого света зависит от того же количества электронов лишь линейно. Это одна из причин, объясняющих, почему на рентгеновских изображениях видны горячие или плотные области в короне с очень хорошим контрастом.
На рентгеновских фотоснимках солнечной короны большие и яркие области лежат над активными областями в фотосфере. Очевидно, что сильное и сложное магнитное поле определяет также и поток энергии в короне над активной областью. Петли, связывающие области противоположной магнитной полярности, выделяются очень хорошо.
На этих же снимках видны маленькие яркие точки рентгеновского излучения. Сопоставляя рентгеновские фотоснимки и магнитограммы, полученные в одно и то же время, легко заметить, что эти рентгеновские точки связаны с биполярными магнитными областями. Магнитные области, определяющие существование ярких рентгеновских точек, столь компактны, что инструменты сегодняшнего дня не позволяют отделить маленькие компактные петли магнитного поля, заполненные перемещающейся внутри этих петель горячей рентгеновской плазмой, от самых точечных источников. Рентгеновские точки существуют совсем недолго, затухая в течение нескольких часов. Яркие точки должны быть связаны с обычными активными областями, но по какой-то причине они существуют значительно более короткое время. Как и солнечные вспышки, они быстро зажигаются. Но в одном очень важном отношении они отличаются от активных областей; они рассеяны по всему Солнцу, а не ограничены подобно солнечным пятнам приэкваториальной зоной активности. Астрофизики предполагают, что яркие рентгеновские точки вносят существенный вклад в выносимый из Солнца магнитный поток. Вероятно, они выносят столько же магнитного поля, сколько и обычные активные области. Разбросанные подобно драгоценным камням по всему Солнцу, яркие точки столь многочисленны, что, возможно, большая часть солнечного магнетизма сосредоточена именно в них.
Рис. Солнечная корона.
Наиболее интересным открытием, сделанным при исследовании нашей ближайшей звезды с использованием высокоэнергичного спектра излучения, является, вероятно, открытие корональных дыр. Корональные дыры — это области, которые выглядят темными в условном цвете монохроматических рентгеновских фотоснимков, огромные корональные области, которые не излучают никакого рентгеновского излучения. В чем причина этого?