Мне скоро придется покинуть Крым, пробыв здесь два с половиной года, и теперь невольно хочется бросить взгляд на все это время, столь обильное переживаниями. Я, конечно, не выполнил того, что предполагал, когда ехал сюда: я рассчитывал как следует разработать щетинки полихет и предпринять эксперименты над окраской и рисунком у зигенид и нарывников. Здесь, конечно, помешали внешние обстоятельства: разработка требовала такой лабораторной обстановки, которая здесь создастся не скоро, но зато в сфере теоретической я здесь сделал, может быть, даже больше, чем думал и реальным результатом являются мои четыре доклада («О творческой эволюции Бергсона», «О возможности построения естественной системы организмов», «Об эвристической ценности эстетики для биологии», «О стиле в биологии»), кроме них, я сделал еще доклад о щетинках и реферат о книге Белоголового. В Симферополе я пережил и вступление мое в зрелый возраст (30 лет) и здесь я вполне созрел в смысле умственного направления. Составление моих докладов доставляло мне большое удовольствие и приятно сознавать, что при писании на определенную тему, как то естественно возникают все новые и новые темы, органически связанные о интересующей в данный момент. Сейчас у меня уже намечается: «Приложение математики к биологии» (что я намерен взять в качестве пробной в Пермском университете) и очень большая тема «Сущность явлений сходства в биологии» (куда целиком войдут все собранные мною материалы по псевдомиметизму, миметизму и т. д.). В математике я прошел не так много как ожидал (полтора тома Чезаре, ознакомился с векторным анализом и теорией функций комплексного переменного в изложении Смирнова), но несомненно вынес много из бесед со здешними математиками (Крыловым, Смирновым и Франком). Штудирование Чезаре доставило мне громадное удовлетворение прежде всего потому, что я мог самостоятельно справляться даже с очень трудными (по свидетельству Крылова) отделами, так что, видимо, если мне дать достаточно времени, я сумею вработаться хорошо в математику.
Чтение докладов в тесном кругу биологического семинария (а одного на даче в Алуште), конечно, не встретило живого отклика: даже Гурвич отнесся довольно холодно к моим идеям, что меня сначала невероятно поражало, я старался по возможности принять во внимание его возражения, но вместо этого еще больше от него отдалялся. И в этом смысле чтение докладов было чрезвычайно полезно для самоограничения. Я теперь с нетерпением жду встречи с Беклемишевым, в котором рассчитываю увидеть единственную родственную душу.
Мои политические воззрения и взгляды на личное поведение и на мораль (реактивом послужило мое увлечение Екатериной Яковлевной), как оказалось, тоже радикально расходятся с таковыми Гурвича, но сейчас, как это ни странно, мне трудно найти почву, на которой мы можем хладнокровно разговаривать и это после того, как раньше мне казалось, что у нас нет вопросов, при обсуждении которых мы не стояли бы на общей плоскости; сейчас же даже философские воззрения наши глубоко расходятся: у меня увлечение Бергсоном, вообще прочь от критицизма и в особенности от всего, что пахнет солипсизмом; он же не может равнодушно слышать возражений против него. В этом радикальном расхождении с человеком, которого я считал наиболее близким мне по духу и кроется значительная доля того стремления на север (вернее, в этом заключается отталкивающая сила, притягательная же олицетворяется Беклемишевым).
Петроград, 18 сентября 1921 г.
Это рассуждение может быть применено не только в биологии, но и в неорганических науках (например, кристаллографии).
Петроград, 25 сентября 1921 г.
За время пребывания в Петрограде посетил две научных лекции: Френкеля о теории относительности и, недавно в клубе научного мировоззрения при институте Гражданских инженеров проф. В. В. Арнольда: новые идеи в учении о пространстве (изложение неэвклидовой геометрии в связи с работами Кейля, Клейна и т. д.). Обе лекции были вполне доступны и много уяснили мне из неясного в обоих вопросах, в особенности много дала в этом отношении лекция проф. Арнольда, в особенности ее вторая половина, так как первая половина почти ничего неизвестного не содержала. Особенно интересно то, что Клейн в своих гектографированных лекциях о неэвклидовой геометрии (по Арнольду, лучшее руководство по этому вопросу) разделяет мыслителей (философов, математиков и др.) по отношению к неэвклидовой геометрии на 4 категории: