На словах все легко, на практике сложности начинаются с выделения ДНК из древних образцов.
Посторонняя ДНК – серьезная проблема, требования к помещениям и вентиляции возникли не на пустом месте. Загрязнителем может быть ДНК того же вида, к которому принадлежит объект исследования (весьма вероятный вариант, если речь идет о человеке) или преобладание ДНК других видов (например, почвенных микроорганизмов). Есть приемы, позволяющие не перепутать “чужую” ДНК с интересующей, однако они не всегда срабатывают. Специалисты помнят забавную (только не для авторов той статьи) историю 1990-х гг.: был опубликован участок митохондриального гена динозавра, жившего 80 млн лет назад[81]
, а потом оказалось, что это человеческий ген. Дело в том, что в ядерной ДНК есть копии митохондриальных генов, накопившие мутации, – так называемые псевдогены, Авторы, конечно, проверили, прежде чем посылать статью в рецензируемый журнал, не похож ли отсеквенированный ими ген на известные митохондриальные гены современных видов, человека в том числе, и сходства не обнаружили, а вот человеческий псевдоген приняли за динозавровый. Но тогда палеогенетика была совсем молодой наукой, практически новорожденной, а с тех пор она шагнула далеко вперед.Наконец, древняя ДНК может подвергаться химическим модификациям, взаимодействовать с другими органическими веществами. В ней могут происходить так называемые постмортальные мутации, заменяющие С на Т или А на G, и надо уметь это учитывать. Методы для этого есть. Поскольку каждый конкретный участок ДНК в образце обычно представлен как минимум несколькими молекулами, он и прочитывается несколько раз. Маловероятно, чтобы один и тот же аденин был заменен во всех фрагментах, поэтому по результатам секвенирования составляют консенсусную (усредненную) последовательность, имея в виду возможность постмортальных мутаций.
Группа Рогаева к тому времени имела значительный опыт работы с древней ДНК. В активе у них была, например, реконструкция полного митохондриального генома шерстистого мамонта. Исследования мтДНК мамонта – и немецкого Института эволюционной антропологии Макса Планка (тех самых людей, которые прославились исследованиями неандертальских и денисовских геномов)[82]
, и Рогаева с соавторами[83] – показали, что мамонт и индийский слон – более близкая родня между собой, чем с африканским слоном.Для российской судмедэкспертизы анализ образцов из Екатеринбургского захоронения стал шагом вперед. Кстати, эксперты из Свердловского областного бюро в процессе сотрудничества с Евгением Рогаевым освоили новейшие методики, с помощью которых позднее производили идентификацию погибших при крушении самолета под Пермью 14 сентября 2008 г.
“Худший случай для анализа ДНК…”
Но вернемся к анализу образцов из екатеринбургского захоронения. Кроме Рогаева, в исследовании участвовали А. П. Григоренко, которая ставила полимеразные цепные реакции, и Ю. К. Моляка, проделавший значительную часть работы с мтДНК. Сам Евгений Рогаев проводил экстракцию ДНК из образцов и ее первые анализы. В числе соавторов названы и другие исследователи из научных центров России, США и Канады[84]
.Образцы выглядели не слишком вдохновляюще. С мамонтами было, вероятно, проще: тогда для работы использовали образец, извлеченный из вечной мерзлоты, сохранивший клеточную структуру, ДНК в клетках было столько, что она прокрашивалась обычными флуоресцентными красителями, как современные образцы. А тут – обугленные кости. Те, кто планировал и осуществлял ликвидацию останков убитых, не могли ничего знать о ДНК, но все же сумели серьезно затруднить работу исследователей. Кости были обожжены и, возможно, облиты серной кислотой, вдобавок имели рыхлую, губчатую структуру. “Худший случай для анализа ДНК, какой можно только придумать”, – вспоминал Е. И. Рогаев.
А. А. Писарев , А. В. Меликсетов , Александр Андреевич Писарев , Арлен Ваагович Меликсетов , З. Г. Лапина , Зинаида Григорьевна Лапина , Л. Васильев , Леонид Сергеевич Васильев , Чарлз Патрик Фицджералд
Культурология / История / Научная литература / Педагогика / Прочая научная литература / Образование и наука