Современная генетическая терапия далеко не ограничивается доставкой фунциональных последовательностей ДНК для замены поврежденного гена. В 2006 году двое американских ученых, Энди Файр и Крейг Мело, совместно получили Нобелевскую премию за открытие биологического процесса под названием РНК-интерференция (РНКи). РНКи – это естественный механизм, при помощи которого организм обнаруживает и разлагает инородный генетический материал. Если приспособить такой процесс для отбраковки дефективной РНК, продуцируемой мутантными генами, пока она не успела выстроить на основе такого «генетического сценария» нездоровый белок, то открывается захватывающий путь для излечения множества болезней. Несмотря на то что первые клинические испытания РНКи проходят с переменным успехом, некоторые биотехнологические компании, например
В дальнейшем генетическая медицина позволит не просто внедрять в организм здоровый ген, но и исправлять или ремонтировать дефектные последовательности в ДНК. Научное сообщество по-настоящему зачаровано одним из таких методов, который позволяет использовать экстраординарный терапевтический потенциал естественного механизма редактирования генов, именуемого CRISPR (короткие палиндромные повторы, регулярно расположенные группами). Эти естественные последовательности в ДНК составляют основу рудиментарной иммунной системы у микробов, но ученые блестяще приспособились использовать их для редактирования любых генов. РНК транскрибируются с локусов CRISPR совместно с ассоциированными с CRISPR белками Cas, что обеспечивают адаптивныйиммунитет за счет комплементарного связывания РНК с нуклеиновыми кислотами чужеродных элементов и последующего разрушения их белками Cas9. Использование методик CRISPR-Cas для направленного редактирования геномов является перспективным направлением в современной генной инженерии. Практически молниеносно лаборатории во всем мире приспособили CRISPR/Cas9 для работы с клетками всевозможных тканей, растительных и животных организмов. Потенциальными реализациями этой техники мы во многом обязаны совместным исследованиям Дженнифер Дудны из Калифорнийского университета в Беркли и Эммануэль Шарпентье из берлинского Института инфекционной биологии им. Макса Планка. В 2014 году они получили многомиллионную премию Breakthrough Prize («Премия за прорыв») за то, что одними из первых распознали самые многообещающие перспективы метода CRISPR. Дальнейшие исследования, проведенные Фэн Чжаном из Массачусетского технологического института, показали, что такая система может редактировать гены и в человеческих клетках, но именно Фэн Чжан первым получил патент на данную технологию.
Высший свет CRISPR: научное сообщество во всем мире признает важный вклад Эммануэль Шарпентье и Дженнифер Дудны (сверху; получают в 2017 году премию в Японии) и Фэн Чжана (снизу), хотя институты, в которых работают эти ученые, являются конкурентами за патентное первенство
В дисциплине, где создание медийной шумихи по поводу всех технологических достижений в порядке вещей, CRISPR задает новые стандарты. В то время как я пишу эти строки, в разгаре серьезная патентная тяжба между двумя университетами, где свои открытия совершили Дженнифер Дудна и Фэн Чжан, а отголоски этой борьбы будут слышны повсюду – от совещательных комнат в биотехнологических компаниях до Шведской академии в Стокгольме. Уже созданы десятки генно-инженерных моделей животных, в которых используется технология CRISPR. Исследователи изменили клетки печени у взрослых мышей, чтобы исправить дефектный ген в модели, где, наряду с другими расстройствами, наблюдалась наследственная тирозинемия. Эксперты считают, что более доступные ткани: глаза, легкие и клетки крови – в недалеком будущем могут стать объектом такой терапии. В конце 2016 года китайские исследователи объявили, что использовали CRISPR в инжиниринге Т-лимфоцитов у пациента, страдающего раком легких, намереваясь усилить иммунный ответ на опухолевые антигены (см. главу 14).
CRISPR может оказаться революционным инструментом для борьбы с такими разрушительными инфекционными заболеваниями, как малярия или лихорадка Зика. Например, инженерия москитного генома в рамках так называемого генетического дрейфа могла бы сделать весь вид бесплодным или блокировать передачу малярийного плазмодия или вируса Зика. Миллионы жизней были бы спасены, но откуда нам знать, на самом ли деле генный дрейф совершенно безопасен? «Существуют определенные риски, связанные с выпуском в природу насекомых, генетически измененных в лаборатории, – считает Энтони Джеймс, исследователь из Калифорнийского университета в Ирвайне, – но я думаю, что бездействие ученых в такой ситуации гораздо опаснее».
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии