«Могут и породят!» — ответили практики, одним из которых был немецкий юрист Понтер Вехтершойзер, и подтвердили свое слово практическим делом. А дело в том, что вблизи умеренно горячих источников выпадает сернистое железо (серный колчедан). Его кристаллы обеспечивают значительную, по меркам микромира, положительно заряженную поверхность. Органические молекулы, наоборот, отягощены отрицательно заряженными группами. Их, конечно, притягивает к поверхности кристаллов. Получается минеральное зерно с органической оболочкой. Оболочка зерна становится препятствием, через которое одни вещества проходят только снаружи внутрь, а другие — исключительно в обратном направлении. Происходит обмен веществ. Чем не клетка? Если и не живая, то полуживая: ей осталось научиться расти и размножаться.
Серно-железные, похожие на пузырьки «клетки» удалось искусственно вырастить в лаборатории. (Надо отдать должное исследователям, которые работали в жутких условиях — летучие соединения серы благовониями не назовешь.) Пузырьки растут благодаря инфляции. (То есть надуванию — не правда ли, понятный смысл знакомого слова?) Инфляцию вызывает давление растворов, сосредоточенных внутри пузырька, которое превышает наружное давление. Вот вам и рост! Со временем пузырек, чтобы не лопнуть, отделяет часть накопленных им соединений в «дочерний» пузырек. А вот — и «размножение почкованием»!
Соединения серы поныне служат важным источником энергии в клетках. Может, это дань далекому прошлому, когда «семена» жизни вызревали вблизи горячих серных источников?
Обратный отсчет
Серный колчедан, конечно, не единственный и далеко не самый рядовой минерал на Земле. А могла ли жизнь «выкристаллизоваться» в более обычных условиях? Палеонтолог Сергей Николаевич Голубев считает, что вполне могла. Уж больно своеобычные закономерности наблюдаются в развитии минерального скелета и в считывании генетического кода. Код этот, определяющий последовательность сборки белков, одинаков для всех обитателей Земли, от бактерий до человека. И в том, и в другом случае органические элементы располагаются по законам кристаллической решетки, как в кристаллах карбонатов и фосфатов кальция или кварца. Может быть, организмы на самом деле «унаследовали» особенности развития от минеральных кристаллов? При минерализации скелета органический шаблон задает форму каждого кристалла и направление его роста.
С. Н. Голубев догадался, что верно должно быть и обратное: кристаллическая решетка может служить затравкой для сборки сложных органических соединений в строго определенной последовательности. (Ведь если этому процессу не задать направленность, получится нечто вроде свитера, связанного в сумасшедшем доме.) Действительно, на поверхности фосфатного минерала белки могут строиться даже при комнатной температуре и без участия сложных органических добавок. Запустив процесс минерализации скелета в обратном направлении, получаем модель сборки важнейших органических молекул на минеральной поверхности. И если «кристаллизация» жизни происходила на подобных минералах, становится понятным, почему многие реакции в клетках и тканях, включая мышечные сокращения, не обходятся без соединений фосфора.
Самую первую и вместе с тем, пожалуй, простейшую модель «минеральных проорганизмов» предложил американский минеаролог Грэм Кэрнс-Смит. Он исходил из предпосылки, что суть жизни заключается в передаче информации. Для этого существуют гены, несущие информацию о признаках и свойствах организма. Поэтому первым организмом должно было быть нечто, напоминающее гены, и притом достаточно обычное. А гены существуют для того, чтобы воспроизводить самих себя, сохраняя накопленную информацию. Конечно, в процессе воспроизводства они могут чуть-чуть ошибаться. (Именно ошибки порождают разнообразие.)
Когда-то в истории жизни подменить гены могли слоистые глинистые минералы, широко распространенные на Земле. Слойки этих минералов представляют собой мозаику из небольших участков. Каждый из них несет упорядоченную (по-своему) систему атомов. Поскольку реальные кристаллы всегда имеют дефекты, новообразующийся при росте кристалла слоек «считывает» эту дефектную ведомость и передает ее дальше. Не удивительно, что на этом же незатейливом способе передачи информации зиждется весь успех современной матричной компьютерной техники.