Вообще - фильеры располагались сначала два ряда - по двадцать штук, всего - сорок волокон в нити. Это позволяло сохранять однообразие условий охлаждения для фильер, и соответственно снижало трудоемкость поддержки техпроцесса. Но потом попробовали ставить два таких набора на один сосуд. Поначалу дело не шло - внутренние ряды обоих наборов нагревались сильнее, нарушалось единообразие температурных режимов и повышалось количество обрывов - или на внутренних, или же на наружных рядах, если понижали температуру фильер. Потом подумали и поставили междурядный охладитель - медные пластины, между которыми протекала проточная вода. Во внутренних рядах стали проскакивать утолщения - явно ускоренное охлаждение подфильерной стекломассы слишком быстро повышало ее вязкость и волокно не успевало вытянуться. Тогда увеличили подогрев стекломассы в самом сосуде, но люди были уже опытные, съели не одну собаку, поэтому соответствующим образом стали охлаждать и внешние фильеры, хотя и меньше, чем внутренние, но так, чтобы результирующая температура была одинакова. И тут всех ждал сюрприз. Повышенная температура в сосуде уменьшала вязкость, стекло вытекало интенсивнее, а ускоренное охлаждение в районе фильер резко повышало вязкость внешнего слоя подфильерной массы, что приводило к меньшим напряжениям в вытягиваемом волокне и соответственно уменьшало и обрывность. Вот так, одним махом, получили увеличение производительности с одного сосуда - и за счет увеличения количества фильер, и за счет увеличения прохождения стекла через каждую фильеру, и за счет уменьшения количества обрывов. Добавление еще двух стафильерных пластин с охладителями надолго сняло проблемы повышения производительности. Естественно, добавилось и количество регулировочных параметров - приходилось следить за подфильерной температурой и регулировать ее изменением подачи охлаждающего воздуха и воды. Но - двести килограммов нити в сутки с одного аппарата - ради этого стоило трудиться.
Еще более равномерным волокно пошло, когда стали следить за постоянством и в пространстве над фильерами. Стекло вытекает в фильеры под давлением, которое оказывает стекломасса в емкости. И тут выявилась очередная проблема - с понижением уровня стекломассы она все меньше и меньше давит на нижние слои, соответственно падает скорость истекания стекла через фильеры. Пришлось перейти к непрерывной подпитке, когда стекломасса постоянно подливалась в горшки малыми дозами, чтобы не вызвать резких скачков уровня стекла и соответственно давления на нижние слои. Так что теперь надо было термостабилизировать как фильерную, так и пополняющие емкости. Но это снизило обрывность еще где-то на 0,6 на один килограмм стекломассы.
Обрывам способствует и термическая неоднородность стекломассы. От нее избавились просто - обложили горшок с расплавом изоляцией из стекловаты, и за время, пока горшок протекал через фильеры, температура оставалась более-менее постоянной. К тому же, одинаковая температура рабочей и пополняющей стекломасс обеспечила равномерность температурного поля - отсутствие скачков температуры не создавало переходов во внутренней структуре стекла. Как уж они справились с еще одной напастью - затеканием стекломассы снаружи вверх по фильерам - я не интересовался - затребовал отработанную на тот момент технологию получения ста килограммов стекловолокна в сутки и побежал - "А! И фильтры ! С вас фильтры из стекловаты для техники !!!" - решать другие проблемы.
ГЛАВА 34.
А другими проблемами были наши доморощенные авиастроители. Образовав в конце июля несколько рабочих групп, в начале августа они получили первые образцы стеклоткани и смолы и стали отрабатывать технологию их использования. К середине августа общее количество занимавшихся этим людей возросло с семидесяти до более чем двухсот человек - как за счет выхода к нам новых сбитых летунов, механов, все еще блуждавших по окрестным лесам, освобожденных из плена, так и за счет рекрутирования более-менее технически грамотных или просто толковых людей обоего пола. И вот вся эта команда увлеченно занималась самообучением конструкции самолетов, изучением аэродинамики и созданием оснастки и технологии ее использования. Вроде бы все отлично. Но когда я стал знакомиться с промежуточными результатами их работы, я пришел в уныние. Нет, обучение и знакомство с конструкциями - дело конечно полезное, это никогда не помешает. Но зачем же повторять старые конструкции на новых материалах ?!? И вроде бы люди-то подобрались технически грамотные, особенно механы со стажем или летчики, некоторые из них даже пытались строить до войны свои собственные самолеты или как минимум планеры, то есть с были знакомы даже с аэродинамическими расчетами. Но мыслили как-то слишком однобоко.
- У вас же есть материал, который по удельной прочности превосходит все существующие материалы !!! И сталь, и дюраль, и дерево, не говоря уж об этом перкале ! Так какого хрена вы сейчас повторяете конструкции, которые рассчитаны на этот мусор ?!?
- Ну не такой уж он и мусор ...