Читаем До и после Победы. Книга 1 (СИ) полностью

Она же равна и упругости диссоциации, то есть равновесному парциальному давлению кислорода. Причем для разных веществ сродство с кислородом при одинаковой температуре будет различным - то есть при той же температуре константы равновесия для них различны. Так, молибден, никель, кобальт, вольфрам имеют меньшую упругость диссоциации их окислов, чем железо, а фосфор, хром, марганец, кремний, титан, алюминий, магний - большую. Соответственно, при той же температуре будет больше распадаться окислов, например, железа и, наоборот, будет больше образовываться окислов, например, алюминия, причем если эти реакции проходят в одном объеме, то алюминий будет забирать и часть кислорода, образовавшегося из окислов железа, соответственно, части восстановленного железа уже не с чем будет реагировать и оно останется в свободном состоянии. То есть алюминий является раскислителем для железа - веществом, которое будет забирать кислород, образующийся при распаде окислов железа, восстанавливая его. Как и фосфор, хром ну и т.д. А железо, соответственно, будет раскислителем для молибдена, никеля и так далее. Соответственно, если нам надо восстановить металл или защитить его от окисления при плавке, надо вводить раскислители - то есть добавлять в расплав, например, алюминий, или титан, или марганец - они будут превращаться в окислы, то есть переходить в шлаки. И, так как это - расходные материалы, то если необходимо, чтобы они присутствовали еще и в конечном сплаве, необходимо учитывать и эффект раскисления - то есть вводить их больше, чем требуется согласно конечному составу. А вот о молибдене, никеле, кобальте, вольфраме - можно не беспокоиться - они по-любому останутся в сплаве практически в неизменной концентрации, так как для них хватает раскислителей, которые заберут от них кислород, если тот все-таки присоединится к этим элементам.

На самом деле все еще сложнее. Так, упругость диссоциации меняется и при изменении концентрации вещества. Например, при 1600 градусах и концентрации 0,2% фосфор, гадина, меняется с железом местами - теперь железо становится раскислителем для фосфора, и тот спокойно остается в расплаве в виде чистого вещества. И лишь с повышением концентрации или понижением температуры хотя бы до 1400 градусов фосфор становится раскислителем. Правда, слабеньким - упругость диссоциации его окислов идет на графиках лишь чуть ниже самого железа. В отличие от, например, кремния, который охотно возьмет на себя лишний кислород, как и хром, и марганец - те тоже подставят грудь вместо фосфора. Поэтому-то эту гадину так трудно совсем вывести из сплавов, тогда как "хорошие ребята" вылетают из них со свистом.

Ну, хорошо - это то, что происходит в самом сплаве. Но, скажем, при выплавке металла из руды или расплавлении металлических чушек угарный и углекислый газы взаимодействует с металлом и его окислами. И есть такая вредная реакция, как реакция оксида железа-3 с угарным газом - при этом образуется железо и углекислый газ с выделением тепла. Так вот - эта реакция обратима. И если в домнах, при выплавке металла из руды, углекислого газа немного, то в пламенных печах - типа тех же мартенов - и вагранках - углекислого газа много, так как там много кислорода - иначе не получим пламени, которое и нагревает металл. Соответственно, углекислый газ распадается на угарный газ и кислород, и последний окисляет железо - происходит так называемый угар железа. Да и сера в виде оксида, присутствующая в печных газах, тоже распадается на оксид и серу - в результате получаем сульфид железа и оксид железа - металл угорает и насыщается серой.

И это еще не все. Свойства стали определяются содержанием в ней углерода. Если пламя малокислородное, то в нем присутствует много угарного газа - соответственно, металл науглероживается с образованием карбида железа - это стандартный процесс для выплавки металла из руды. А в плавильных печах пламя окислительное, происходит выгорание углерода, то есть обезуглероживание - состав стали меняется. Карбиды железа вообще хрупкие штуки - так, если перегреть резец, то его карбид начнет окисляться - получим оксид железа и углекислый газ. Поэтому при резке металлов требуется охлаждение, и чем скоростнее резка - тем больше должно подаваться охлаждающей жидкости.

И, чтобы защитить металл от выгорания и обезуглероживания, а также вытащить из него ненужные примеси, нужно образовывать при выплавке металла или его переплавке шлаки. Шлаки состоят из оснований - окислов кальция, магния, марганца и т.п., кислот - окислов кремния, фосфора, хрома. И шлакообразование позволяет нейтрализовать кислотные окислы основными - образуются соли, которые и называются шлаками. Соответственно, чтобы выжать из сплава примеси, скажем, фосфора, надо ввести в шихту кальций, магний, марганец - и т.п. - они растворятся в сплаве, соединятся с кислыми окислами и всплывут на поверхность.

Перейти на страницу:

Похожие книги