Таким образом, чтобы выполнить программу, нам необходимо отточить умение определять обычные (высокоэнтропийные) конфигурации частиц в противовес редким (низкоэнтропийным). То есть при заданном состоянии физической системы нам нужно определить, много или мало существует перестановок составляющих ее частей, при которых система по виду останется прежней. В качестве примера заглянем в наполненную паром ванную комнату сразу после того, как вы закончили нежиться под горячим душем. Чтобы определить энтропию пара, нужно посчитать число конфигураций молекул – их возможные положения и возможные скорости, – имеющих одинаковые макроскопические свойства, то есть одинаковый объем, температуру и давление[26]. Провести математический подсчет для набора молекул H2O намного сложнее, чем для набора одинаковых монет, но делать это большинство студентов-физиков научаются ко второму курсу. Проще да и полезнее разобраться в том, какое качественное влияние объем, температура и давление оказывают на энтропию.
Сначала объем. Представьте, что порхающие молекулы H2O собрались плотной кучкой в одном крохотном уголке вашей ванной и образовали там плотный комок пара. В такой конфигурации возможные перестановки молекул будут резко ограничены: передвигая молекулы воды в пространстве, вы должны будете удерживать их в пределах комка, иначе модифицированная конфигурация
Теперь температура. Что мы подразумеваем под температурой на уровне молекул? Ответ известен. Температура – это средняя скорость множества молекул[27]. Объект холоден, если средняя скорость его молекул низка, и горяч, если она высока. Так что определить, как температура влияет на энтропию, равнозначно тому, чтобы определить, как влияет на энтропию средняя скорость молекулы. И так же, как в случае с объемом, для качественной оценки нам много не потребуется. Если температура пара низка, то разрешенных перестановок – замен скоростей молекул – будет относительно немного: чтобы температура оставалась постоянной и гарантировала таким образом практическую одинаковость конфигураций, вы должны будете компенсировать любое увеличение скоростей отдельных молекул соответствующим снижением скоростей других молекул. Но проблема низкой температуры (низкой средней скорости молекул) в том, что понижать скорости вам особенно некуда – уткнетесь в нулевой предел. Поэтому доступный диапазон возможных скоростей молекул оказывается достаточно узким, а свобода по перераспределению этих скоростей ограничена. И наоборот, если температура высока, то и игра в перераспределение набирает обороты: с более высоким средним значением диапазон молекулярных скоростей (одни из которых выше среднего значения, другие – ниже) оказывается намного шире, что позволяет свободнее перемешивать скорости, сохраняя при этом среднее значение. Большее число практически одинаковых конфигураций скоростей молекул означает, что более высокой температуре соответствует более высокая энтропия.
Наконец, давление. Давление пара на вашу кожу или на стены ванной обусловлено столкновениями налетающих молекул H2O, ударяющихся об эти поверхности: каждая молекула, налетая, дает крохотный толчок, так что чем больше молекул, тем выше давление. То есть для заданных температуры и объема давление определяется полным числом молекул пара в вашей ванной – величиной, влияние которой на энтропию можно оценить с величайшей простотой. Меньшее число молекул H2O в вашей ванной (вы быстро приняли душ) означает меньшее число возможных перестановок, следовательно, более низкую энтропию; и наоборот, большее число молекул H2O (вы долго нежились под душем) означает большее число возможных перестановок, так что энтропия окажется выше.
Резюмируем. Меньшее число молекул, более низкая температура или меньший объем дают нам более низкую энтропию. Большее число молекул, более высокая температура или больший объем соответствуют более высокой энтропии.