Читаем До предела чисел. Эйлер. Математический анализ полностью

"Можно сказать, что Эйлер сделал с исчислением Ньютона и Лейбница то, что Евклид сделал с геометрией Евдокса или Ви- ет — с алгеброй Кардано и Аль-Хорезми. Эйлер взял дифференциальное исчисление Лейбница и метод Ньютона и поместил их в более общую область математики, которая с этого момента стала называться анализом, то есть изучением функций и бесконечных процессов".


Это изменение касалось не только содержания, но и математической символики. В качестве упражнения может быть полезно почитать эти книги и убедиться, что они понятны и сегодня. Клиффорд Трусделл (1919-2000), выдающийся американский физик, писал по этому поводу:


"Эйлер был первым ученым в западной цивилизации, кто стал писать о математике ясным и легким для чтения языком. Он объяснил своим современникам, что вычислению бесконечно малых величин может научиться, приложив небольшие старания, любой разумный человек. Он справедливо славился чистотой своего стиля и честностью, с которой обращался к читателю, когда испытывал трудности".


Некоторые разработки Эйлера в области анализа интересны только узким специалистам, и мы ограничимся их перечислением: это гипергеометрические ряды, гиперболические функции, дифференциальные уравнения, эллиптические функции и комплексные интегралы.

База, на которой основано одно из самых важных открытий, описанных в Introductio in analysin infinitorum,— это формула Муавра. Современный математик записал бы ее так:

(cosx + isinx)n = cosnx + isinnx.

Сам де Муавр записал ее в 1730 году в более сложном виде, но в соответствии с традицией того времени:




АБРАХАМ ДЕ МУАВР

Абрахам де Муавр родился в 1667 году во французском регионе Шампань, однако карьеру сделал в Великобритании, куда бежал от религиозных преследований протестантов, начавшихся после того, как в 1685 году Людовик XIV отменил Нантский эдикт. В Лондоне он оказался в стесненных обстоятельствах и зарабатывал на жизнь частными уроками и игрой в шахматы. Де Муавр близко подружился с Эдмундом Галлеем (1656-1742) и Ньютоном, с которым он каждый день пил кофе и который, как говорят, каждый раз, когда ему задавали вопрос о вычислениях, отвечал: "Спросите де Муавра, он разбирается в этом лучше". Кроме этого, де Муавр дружил с Лейбницем, Эйлером и семьей Бернулли, однако все эти связи не помогли ему найти постоянную работу. Он был превосходным математиком: именно ему принадлежит введение в теорию вероятностей независимых событий — результат, приближающий к понятию распределения статистических данных в виде колокола Гаусса. Также де Муавр изучал вопрос ренты в работе Annuities in life ("Пожизненная рента"), опубликованной в 1724 году и основанной на одном из сочинений Галлея. В области анализа де Муавру принадлежит заслуга асимптотического представления факториала. Впоследствии эта формула станет известна как формула Стирлинга:

n! = √(2πn)(n/e)n.


Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература