На основании этой теории можно разработать модель мозга в виде графа – сети или скопления нейронов (вершины), обозначить их парные соединения (ребра), а затем обработать эту абстракцию математическими методами теории графов. Принципы этой теории также применимы по отношению к системе любой сложности, включая, например, воздушное и автомобильное сообщения, доставку почты, сети сотовой связи, интернет и даже наш круг друзей и знакомых.
Хабы: приоритетные вершины
Недавние доработки теории графов дают новую информацию об этих сложных системах. Например, вопреки привычному мнению, вершины в этих системах не связаны случайно, с одинаковым количеством связей на вершину. Очень часто некоторые из них имеют гораздо больше связей, чем другие. Можно провести аналогию с аэропортами: такие крупные терминалы, как международные аэропорты – парижский Шарль-де-Голль или лондонский Хитроу – предлагают намного больше рейсов в другие аэропорты, чем маленькие терминалы в Лилле или, например, Монпелье. То есть из аэропорта Шарль-де-Голль пассажир может отправиться практически в любую точку мира, в то время как прямых рейсов из аэропорта Монпелье будет гораздо меньше.
Чтобы подчеркнуть такую приоритетную связность больших аэропортов, стали использовать англицизм
Это свойство обеспечивает определенную устойчивость таким сложным сетям: если они будут затронуты случайным образом той или иной аномалией, то повредится, скорее, одна из их многочисленных вершин с небольшим количеством связей. Их уязвимость обусловлена уровнем хабов: если эти несколько вершин с большим количеством связей, на которых держится вся сеть, будут повреждены, это повлияет на работу всей сети в целом. Здесь можно провести аналогию с огромным различием в плане последствий при забастовке, которая приводит к закрытию большого аэропорта, в отличие от забастовки в маленьком аэропорту.
Когда мир тесен!
В получившей широкую известность статье, опубликованной в 1998 году в журнале
Вот поэтому Уоттс и Строгац назвали такие сети «сетями тесного мира» (