Читаем Достучаться до небес: Научный взгляд на устройство Вселенной полностью

Мы в самом деле не знаем, что находится там, за горизонтом — границей наблюдаемой Вселенной. Ограниченность наших наблюдательных возможностей позволяет допустить существование там новых необычных явлений. Другие структуры, другие измерения, даже другие законы природы могут иметь место до тех пор, пока их существование не вступает в противоречие с наблюдаемыми явлениями. Это не означает, что буквально математически непротиворечивые структуры физически существуют в природе, как иногда утверждает мой коллега–астрофизик Макс Тегмарк. Однако это означает все же, что там, за горизонтом, может находиться множество самых неожиданных явлений и объектов.

Мы пока не знаем, существуют ли другие измерения или другие вселенные. Более того, мы не можем даже сказать наверняка, конечна Вселенная в целом или бесконечна, хотя большинство из нас считает, что, скорее всего, бесконечна. Ни одно наблюдение, ни одно измерение не дают никаких признаков ее конца, но дальность наблюдений и измерений ограничена. Вообще, Вселенная может иметь конец, так же как может иметь форму мяча или воздушного шара. Но в настоящее время ни одно теоретическое или экспериментальное свидетельство не указывает на это.

Большинство физиков предпочитают не думать слишком много о том, что царит за пределами видимой Вселенной, поскольку мы вряд ли когда-нибудь узнаем, что там. Однако любая теория гравитации или квантовой гравитации дает нам математические инструменты для предположений и прогнозов. На основе теоретических методов и гипотез о дополнительных пространственных измерениях физики иногда придумывают экзотические варианты иных вселенных, которые либо вообще не контактируют с нашей Вселенной, либо контактируют только через гравитацию. Как говорилось в главе 18, специалисты по теории струн и другие физики рассматривают возможность существования мультивселенной, состоящей из множества независимых вселенных, что согласуется с уравнениями теории струн; иногда эти рассуждения сочетаются с антропным принципом, который использует возможную множественность вселенных в своих интересах. Некоторые даже пытаются отыскать сигнатуры, по которым в будущем можно было бы судить о существовании подобных мультивселенных. Как мы видели в главе 17, в одном конкретном сценарии двухбрановая мультивселенная помогла бы нам получить ответы на некоторые вопросы физики элементарных частиц — ив этом случае имела бы проверяемые следствия. Но большинство дополнительных вселенных, будучи возможными, в обозримом будущем наверняка останутся за пределами наших экспериментальных проектов. Поэтому пока они останутся лишь теоретическими абстрактными гипотезами.

БОЛЬШОЙ ВЗРЫВ: ОТ МАЛОГО К БОЛЬШОМУ — СКВОЗЬ ВРЕМЯ

Теперь, когда мы вышли в пространство и рассуждаем о самых больших размерах, которые можно увидеть в наблюдаемой Вселенной, можно сказать, что мы достигли внешних пределов видимого (и вообразимого). Попробуем разобраться, как Вселенная, в которой мы живем, развивалась во времени и откуда взялись те громадные структуры, которые мы сегодня видим. Теория Большого взрыва говорит нам, что Вселенная за 13,75 млрд лет своей жизни выросла с первоначального размера до нынешних 100 млрд световых лет. Фред Хойл шутливо назвал теорию в честь первоначального толчка — взрыва, после которого раскаленный плотный шар начал расширяться, превращаясь в массу звезд и звездных структур, которые мы наблюдаем: шар рос, вещество «растекалось» по все большему объему и постепенно остывало.

Однако есть вещи, о которых мы вообще ничего не знаем: что, собственно, взорвалось в самом начале и как это произошло или хотя бы какого оно было размера до взрыва. Если последующую эволюцию Вселенной мы себе более или менее представляем, то ее рождение по–прежнему покрыто тайной. Но хотя теория Большого взрыва ничего не говорит нам о начальном моменте существования Вселенной, это все же очень успешная теория, которая может многое сообщить нам о ее последующем развитии. Сегодняшние наблюдения вместе с теорией Большого взрыва позволяют нам в значительной степени восстановить ход эволюции нашей Вселенной.

В начале XX в. никто еще не знал, что Вселенная расширяется. Вообще, в тот момент, когда Эдвин Хаббл впервые взглянул на небо, об эволюции Вселенной известно было очень мало.

Харлоу Шепли измерил Млечный Путь и получил 300 ООО световых лет в поперечнике, но при этом он был убежден, что, кроме Млечного Пути, во Вселенной ничего нет. В 1920–е гг. Хаббл понял, что некоторые туманности, которые Шепли считал пылевыми облаками (и которые выглядели под стать этому скучному названию), на самом деле представляют собой галактики, отстоящие от нас на миллионы световых лет.

Перейти на страницу:

Похожие книги

Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература