Читаем Достучаться до небес: Научный взгляд на устройство Вселенной полностью

В разговоре о науке и о том, как действуют ученые, сценарист и режиссер Марк Висенте заметил, что его в свое время поразило, что ученые не любят делать слишком определенные, без всяких оговорок, заявления, которые большинство обычных людей делает не задумываясь. Ученые не обязательно очень уж красноречивы, но они всегда стремятся точно сказать, что они знают, а чего не знают или не понимают, по крайней мере в своей научной области. Они редко говорят «да» или «нет», потому что такой ответ не может точно отразить весь спектр возможностей. Вместо этого они говорят о вероятностях либо ограничивают свои заявления определенными условиями. По иронии судьбы, из-за такой разницы в языке люди часто неверно понимают заявления ученых или преуменьшают их значение. Несмотря на то что ученые стремятся объяснить все как можно точнее, неспециалисты зачастую просто не знают, как интерпретировать их заявления: ведь любой неученый, имея столько свидетельств в пользу своего тезиса, без колебаний сказал бы что-нибудь более определенное. Но для ученого отсутствие 100%-ной вероятности не означает отсутствия знания. Это всего лишь следствие неопределенностей, изначально присущих любым измерениям. Вот об этом мы с вами сейчас и поговорим. Вероятностное мышление помогает уяснить смысл того или иного явления и позволяет принимать взвешенные решения. В этой главе мы подумаем о том, что говорят нам измерения, и разберемся, почему именно вероятностные заявления наиболее точно отражают состояние знаний — научных или любых других — в любой конкретный момент времени.

НЕОПРЕДЕЛЕННОСТЬ ПО–НАУЧНОМУ

В Гарварде недавно прошел диспут, посвященный попыткам определить важнейшие элементы современного образования. Одной из обсуждавшихся категорий (по существу, частью обязательных научных требований) были «эмпирические рассуждения». Предложение состояло в том, что университет должен ставить перед собой цель «научить студентов собирать и оценивать эмпирические данные, взвешивать доказательства, разбираться в оценках и вероятностях, делать выводы из имеющихся данных [пока все нормально —Л. Р.], а также распознавать ситуации, в которых вопрос не может быть разрешен на базе имеющихся свидетельств».

Предложенная формулировка — позже она была изменена — была составлена с самыми лучшими намерениями, но содержала в корне неверное представление о том, как работают измерения, то есть экспериментальные данные. Как правило, наука решает вопросы с определенной степенью вероятности. Конечно, мы можем достичь высокой степени уверенности в каком-то вопросе или наблюдении и высказывать здравые суждения. Однако редко человеку удается решить вопрос полностью — научный или иной — на основании прямых доказательств. Мы можем набрать достаточно данных, чтобы можно было доверять причинно-следственным связям, можем делать необычайно точные предсказания, но, как правило, все они делаются с определенной степенью вероятности. Как говорится в главе 1, неопределенность, даже маленькая, допускает потенциальное существование новых интересных явлений, которые еще надо открыть. Мало что известно со 100%-ной точностью, и ни одна теория или гипотеза не будет гарантированно действовать в условиях, в которых еще не проводились никакие испытания.

В измерения всегда входит некоторый вероятностный компонент. Многие научные измерения опираются на предположение о том, что те или иные явления основаны на существующих физических закономерностях, которые можно открыть при помощи достаточно точных и тщательных измерений. При помощи измерений мы стараемся найти эти физические закономерности. Затем мы можем утверждать, что некий интервал, в пределах которого лежат наши измерения, содержит истинную величину измеряемого параметра с вероятностью 95%. В этом случае мы могли бы сказать, что уверены на 95%. Подобные вероятности сообщают нам достоверность любого конкретного измерения, а также полный спектр возможностей и следствий. Невозможно до конца понять смысл измерения, не зная и не оценивая связанных с ним неопределенностей.

Один из источников неопределенности — то, что в природе не существует абсолютно точных измерительных инструментов. Для измерений абсолютной точности потребовалось бы устройство, откалиброванное с точностью до бесконечного числа десятичных знаков. Экспериментаторы не в состоянии проводить такие измерения — они могут калибровать свои инструменты лишь с той точностью, которую допускают современные технологии. Чем более развиты технологии, тем точнее измерительные устройства. При всем при том измерения никогда не достигнут абсолютной точности, до каких бы вершин не поднялась техника. Некоторая систематическая погрешность, или неопределенность[41], присущая самому измерительному устройству, останется всегда.

Перейти на страницу:

Похожие книги

Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Она смеётся, как мать. Могущество и причуды наследственности
Она смеётся, как мать. Могущество и причуды наследственности

Книга о наследственности и человеческом наследии в самом широком смысле. Речь идет не просто о последовательности нуклеотидов в ядерной ДНК. На то, что родители передают детям, влияет целое множество факторов: и митохондриальная ДНК, и изменяющие активность генов эпигенетические метки, и симбиотические микроорганизмы…И культура, и традиции, география и экономика, технологии и то, в каком состоянии мы оставим планету, наконец. По мере развития науки появляется все больше способов вмешиваться в разные формы наследственности, что открывает потрясающие возможности, но одновременно ставит новые проблемы.Технология CRISPR-Cas9, используемая для редактирования генома, генный драйв и создание яйцеклетки и сперматозоида из клеток кожи – список открытий растет с каждым днем, давая достаточно поводов для оптимизма… или беспокойства. В любом случае прежним мир уже не будет.Карл Циммер знаменит своим умением рассказывать понятно. В этой важнейшей книге, которая основана на самых последних исследованиях и научных прорывах, автор снова доказал свое звание одного из лучших научных журналистов в мире.

Карл Циммер

Научная литература