ATLAS (A Toroidal LHC Apparatus), как и CMS, содержит в своем названии ссылку на магниты, поскольку для его работы также необходимо сильное магнитное поле. Слово «тороидальный» в названии относится именно к магнитам. Поле, которое они создают, не такое мощное, как в CMS, зато занимает громадный объем. Именно из‑за громадных магнитных тороидов ATLAS стал более крупным из двух универсальных детекторов и вообще самой крупной экспериментальной установкой в истории человечества. Е^о длина 46 м, диаметр — 25 м; он удобно устроился в пещере длине й 55 и высотой 40 м. Весит детектор 7000 т и уступает CMS по массе почти вдвое.
Чтобы иметь возможность измерять все характеристики частиц, ATLAS окружает зону столкновений множеством все более крупных цилиндрических детекторных элементов. В конструкции и CMS, и ATLAS предусмотрено несколько устройств, предназначенных для измерения траекторий и зарядов пролетающих частиц. Вылетая из точки столкновения, частицы встречают на своем пути
ТРЕКЕРЫ
В самой глубине детектора, ближе всего к зоне взаимодействия, располагаются так называемые трекеры. Их задача — точно зафиксировать положение вылетающих из зоны заряженных частиц, чтобы затем можно было восстановить траекторию каждой частицы и измерить импульс. И в CMS, и в ATLAS трекеры включают в себя несколько концентрических компонент.
Ближайшие к пучку и зоне взаимодействия слои состоят из самых мелких сегментов и обеспечивают большую часть данных. В этом слое, который начинается в нескольких сантиметрах от протонной трубки, располагаются кремниевые
Первые три слоя детектора CMS — от самого внутреннего до радиуса 11 см — состоят из пикселей размером 100 х 150 мкм; всего таких пикселей 66 млн. Внутренний пиксельный детектор ATLAS не менее точен. Самая мелкая единица внутренней части детектора, с которой можно считать информацию, имеет размер 50 х 400 мкм; полное число таких пикселей в ATLAS — около 82 млн, то есть немного больше, чем в CMS.
Пиксельным детекторам с их десятками миллионов ячеек необходима сложная электронная система, обеспечивающая надежное и своевременное считывание информации. Быстродействие и масштабы системы считывания, а также сильнейшее излучение, которому будут подвергаться элементы внутренних детекторов, — вот главные технические проблемы, которые пришлось решать при создании обеих установок [рис. 35).
Внутренние трекеры состоят из трех слоев; соответственно, для каждой достаточно долго живущей заряженной частицы, проходящей сквозь них, фиксируется по три точки. Начатые здесь треки будут продолжены в следующих слоях и в конце концов дадут устойчивый след, который можно будет однозначно соотнести с какой‑то определенной частицей.
Мы с Мэттью Бакли уделили серьезное внимание геометрии внутренних трекеров. Мы поняли, что по случайному совпадению некоторые возникшие при столкновении новые заряженные частицы, распадающиеся через слабое взаимодействие до своих нейтральных партнеров, оставят после себя след длиной всего несколько сантиметров. Это означает, что в этих особых случаях их путь целиком будет лежать в пределах толщины внутреннего трекера, и помимо считанной здесь информации ничего об этих частицах известно не будет. Мы рассмотрели дополнительные трудности, с которыми столкнутся экспериментаторы в подобных ситуациях — ведь им придется опираться только на данные с пикселей самых глубоких слоев внутреннего детектора.