Читаем Достучаться до небес: Научный взгляд на устройство Вселенной полностью

Импульс (при медленном движении он равен произведению массы на скорость, но при скоростях частиц, близких к скорости света, его удобнее описать как сгусток энергии, движущийся в определенном направлении) сохраняется в проекции на любое направление. Как и в случае с энергией, до сих пор ученым не удалось обнаружить никаких свидетельств того, что импульс может безвозвратно теряться. Так что если суммарный импульс частиц, зарегистрированных детектором, меньше, чем вошедший туда импульс, это означает, что какая‑то другая частица (или частицы) сумела улизнуть, унося с собой недостающую часть. Именно такая логика позволила Паули сделать вывод о существовании нейтрино (в его случае — при ядерном бета–распаде); именно таким образом мы и по сей день узнаем о присутствии этих слабо взаимодействующих и почти невидимых частиц[45].

В адронных коллайдерах экспериментаторы измеряют все импульсы в поперечных к пучку направлениях, суммируют и смотрят, весь ли импульс на месте. Они рассматривают только поперечные направления, потому что в продольных направлениях полный импульс зарегистрировать намного труднее — ведь немалая его часть уносится частицами, продолжающими движение по трубке пучка. Импульс, перпендикулярный направлению движения первоначального протонного пучка, измерить и учесть проще.

Суммарный поперечный импульс сталкивающихся в коллайдере частиц практически равен нулю; нулю, соответственно, должен равняться и суммарный поперечный импульс возникших в результате столкновения частиц. Поэтому, если измерения идут вразрез с ожиданиями, экспериментаторы могут смело заключить, что чего‑то не хватает. Остается только разобраться, какая это была из множества потенциально возможных невзаимодействующих частиц. Для обычных процессов Стандартной модели ответ известен заранее: незарегистрированными останутся нейтрино. Исходя из известных характеристик слабого взаимодействия (мы поговорим о нем чуть позже), в котором участвуют нейтрино, физики проводят расчет и прогнозируют частоту их появления. Кроме того, физики уже знают, как должен выглядеть распад W–бозона, — к примеру, одиночный электрон или мюон с поперечным импульсом, соответствующим по энергии примерно половине массы W–бозона, представляет собой чрезвычайно редкое явление и свидетельствует именно об этом. Поэтому, исходя из закона сохранения импульса и теоретически рассчитанной входной величины, нейтрино можно «вычислить». Естественно, у этих частиц меньше идентифицирующих «ярлычков», чем у тех, что мы наблюдаем непосредственно. Об их присутствии можно судить лишь по комбинации теоретических соображений и измеренной величине недостающей энергии.

Очень важно помнить об этом, рассматривая новые открытия. Примерно такие же рассуждения позволяют судить о присутствии и других новых частиц, не несущих заряда или несущих заряд настолько слабый, что их невозможно обнаружить непосредственно. Только недостаток суммарной энергии вкупе с теоретическим расчетом входных параметров позволяет судить, что происходило на самом деле и какие «действующие лица» сумели ускользнуть незамеченными. Вот почему так важна герметичность детектора для регистрации как можно большей доли поперечного импульса.

В ПОИСКАХ АДРОНОВ

Мы рассмотрели лептоны (электроны, мюоны, тау–частицы и ассоциированные с ними нейтрино). Оставшаяся категория частиц Стандартной модели носит название адроны — это частицы, участвующие в сильном взаимодействии. В эту категорию входят все частицы, состоящие из кварков и глюонов, такие как протоны, нейтроны и частицы под названием пионы. Адроны имеют внутреннюю структуру — это связанные состояния кварков и глюонов, удерживаемых вместе посредством сильного взаимодействия.

Однако в Стандартной модели вы не найдете всех возможных связанных состояний. В нее вошли наиболее фундаментальные частицы, которые, объединяясь, собственно и образуют адронные состояния: а именно кварки и глюоны. Помимо верхних и нижних кварков, обитающих внутри протонов и нейтронов, существуют более тяжелые кварки под названиями очарованный и странный, истинный и красивый. Как и у лептонов, более тяжелые кварки соответствуют по заряду своим легким партнерам — верхнему и нижнему кварку. Тяжелые кварки, как и тяжелые лептоны, непросто обнаружить в природе. Для их изучения тоже нужны коллайдеры.

Перейти на страницу:

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука
Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература
Семь грехов памяти. Как наш мозг нас обманывает
Семь грехов памяти. Как наш мозг нас обманывает

Итог многолетней работы одного из крупнейших специалистов в мире по вопросам функционирования человеческой памяти. Обобщая данные научных исследований по теме – теоретических и экспериментальных, иллюстрируя материал многочисленными примерами, в том числе из судебной практики и из художественной литературы, автор не только помогает разобраться в причинах проблем, связанных с памятью, но и показывает, как можно ее усовершенствовать и в итоге улучшить качество своей жизни.«Выдающийся гарвардский психолог Дэниел Шектер изучает ошибки памяти и разделяет их на семь категорий… Новаторское научное исследование, дающее представление об удивительной неврологии памяти и содержащее ключ к общему пониманию сбоев в работе мозга». (USA Today)В формате PDF A4 сохранен издательский макет.

Дэниел Шектер

Научная литература / Научно-популярная литература / Образование и наука