Читаем Достучаться до небес: Научный взгляд на устройство Вселенной полностью

Если имеешь дело с волнами, нужно, чтобы их гребни и впадины располагались на правильном расстоянии, примерно соответствующем размеру объекта, который ученые пытаются рассмотреть. Волна в этом смысле подобна сети, размер ячейки которой соответствует длине волны. Если известно только, что в сети что‑то есть, это «что‑то» гарантированно находится в пределах области, по размерам соответствующей размерам сети. Чтобы узнать о положении объекта точнее, потребуется либо сеть с меньшими ячейками, либо другой способ поиска неоднородностей в более мелком масштабе.

Квантовая механика говорит нам, что по характеристикам волны можно судить о вероятности обнаружения частицы в конкретной точке пространства. Волны, о которых идет речь, могут быть обычными световыми волнами, а могут оказаться теми, которые несет в себе каждая отдельная частица. Длина такой волны говорит нам о том, на какое минимальное разрешение мы можем рассчитывать, если будем зондировать малые расстояния с помощью частицы или излучения.

Квантовая механика также утверждает, что короткие волны требуют высоких энергий. Дело в том, что с энергией связана частота, и волны самой высокой частоты — с самой короткой, соответственно, длиной — несут в себе максимальную энергию. Таким образом, квантовая механика связывает высокие энергии и малые расстояния и подсказывает нам, что только эксперименты, оперирующие высокими энергиями, могут помочь ученым проникнуть в тайны внутреннего устройства вещества. Именно по этой принципиальной причине для зондирования самой сердцевины вещества и его фундаментального строения нам необходимы устройства, способные разгонять частицы до высоких энергий.

О том, что высокие энергии позволяют исследовать крохотные расстояния и взаимодействия на этих расстояниях, говорят и квантово–механические волновые соотношения. Чем меньшие расстояния мы хотим рассмотреть, тем более высокие энергии — и, следовательно, более короткие волны — нам потребуются. Квантово–механический принцип неопределенности, утверждающий, что малые расстояния связаны с большими импульсами, получает дополнение в лице специальной теории относительности, которая устанавливает связь между энергией, массой и импульсом и делает эту связь более отчетливой.

Ко всему прочему, Эйнштейн научил нас, что энергия и масса взаимозаменяемы и могут превращаться друг в друга. Так, при столкновении частиц их масса может обернуться энергией, поэтому чем выше энергия, тем более тяжелые материальные частицы могут быть получены, так как Е = mc2. Это уравнение означает, что высокая энергия — Е — делает возможным создание более тяжелых частиц с большей массой — т. И эта энергия носит всеобщий характер, из нее может возникнуть частица любого типа, если только она кинематически возможна (иначе говоря, достаточно легка).

Таким образом, высокие энергии, исследованием которых мы занимаемся в настоящее время, — это мостик к меньшим расстояниям и размерам, а возникающие в ходе эксперимента частицы — ключ к пониманию фундаментальных законов природы, действующих на этих расстояниях. Любые новые частицы и взаимодействия, проявляющиеся на малых расстояниях, могут стать ключом к пониманию основы так называемой Стандартной модели элементарных частиц — наших нынешних представлений о самых базовых, самых фундаментальных структурных элементах вещества и их взаимодействиях. Теперь давайте рассмотрим некоторые ключевые открытия, связанные со Стандартной моделью, и методы, которые используют сегодня ученые, чтобы еще немного продвинуться в этом направлении.

<p>ОТКРЫТИЕ ЭЛЕКТРОНОВ И КВАРКОВ</p>

Все объекты в атоме — электроны, обращающиеся вокруг ядра, и кварки, удерживаемые глюонами внутри протонов и нейтронов — были экспериментально обнаружены учеными при помощи Миниатюрных «зондов» с высокими энергиями. Мы уже видели, что электроны в атоме привязаны к ядру силой притяжения противоположных электрических зарядов. Благодаря этой силе энергия системы в целом — атома — оказывается ниже, чем суммарная энергия отдельных его элементов. Поэтому, для того чтобы выделить и исследовать электроны, кто‑то должен передать атому достаточно энергии, чтобы его ионизировать — иначе говоря, освободить электроны, оторвав их от ядра. Отдельный электрон для физиков гораздо удобнее: его свойства, такие как заряд и масса, можно исследовать.

Перейти на страницу:

Похожие книги

Цикл космических катастроф. Катаклизмы в истории цивилизации
Цикл космических катастроф. Катаклизмы в истории цивилизации

Почему исчезли мамонты и саблезубые тигры, прекратили существование древние индейские племена и произошли резкие перепады температуры в конце ледникового периода? Авторы «Цикла космических катастроф» предоставляют новые научные свидетельства целой серии доисторических космических событий в конце эпохи великих оледенении. Эти события подтверждаются древними мифами и легендами о землетрясениях, наводнениях, пожарах и сильных изменениях климата, которые пришлось пережить нашим предкам. Находки авторов также наводят на мысль о том, что мы вступаем в тысячелетний цикл увеличивающейся опасности. Возможно, в новый цикл вымирания… всего живого?The Cycle Of Cosmic Catastrophes, Flood, Fire, And Famine In The History Of Civilization ©By Richard Firestone, Allen West, and Simon Warwick-Smith

Аллен Уэст , Ричард Фэйрстоун , Симон Уэрвик-Смит

История / Научная литература / Прочая научная литература / Образование и наука
Четыре социологических традиции
Четыре социологических традиции

Будучи исправленной и дополненной версией получивших широкое признание критиков «Трех социологических традиций», этот текст представляет собой краткую интеллектуальную историю социологии, построенную вокруг развития четырех классических идейных школ: традиции конфликта Маркса и Вебера, ритуальной солидарности Дюркгейма, микроинтеракционистской традиции Мида, Блумера и Гарфинкеля и новой для этого издания утилитарно-рациональной традиции выбора. Коллинз, один из наиболее живых и увлекательных авторов в области социологии, прослеживает идейные вехи на пути этих четырех магистральных школ от классических теорий до их современных разработок. Он рассказывает об истоках социологии, указывая на области, в которых был достигнут прогресс в нашем понимании социальной реальности, области, где еще существуют расхождения, и направление, в котором движется социология.Рэндалл Коллинз — профессор социологии Калифорнийского университета в Риверсайде и автор многих книг и статей, в том числе «Социологической идеи» (OUP, 1992) и «Социологии конфликта».

Рэндалл Коллинз

Научная литература