Но способ получить его существует. Для этого нужно провести эксперимент много раз. Всякий раз, когда у вас заболит голова, вам следует бросить монетку и принять случайное решение о том, принимать на этот раз аспирин или нет. Результат, естественно, нужно зафиксировать. После достаточного количества испытаний вы сможете усреднить свои данные по различным типам головной боли и сопутствующим обстоятельствам (возможно, боль проходит быстрее, если вы накануне хорошо выспались); статистика поможет вам получить верный результат. Вероятно, в ваших измерениях не будет систематической погрешности, поскольку решение о приеме лекарства вы принимали на основании броска монетки, а выборка состоит из вас одного, поэтому результаты при достаточном количестве испытаний будут корректными.
Было бы здорово, если бы любое лекарство можно было испытать посредством такой простой процедуры. Однако большинство лекарств используется при лечении более серьезных заболеваний, чем головная боль, иногда даже смертельно опасных. А у многих лекарств есть долгосрочные последствия, поэтому провести много коротких испытаний на одном человеке невозможно, даже если очень хочется.
Так что обычно, когда биологи или врачи хотят проверить, насколько хорошо действует лекарство, они не испытывают его на одном–единственном человеке, хотя с точки зрения науки такой вариант был бы оптимальным. Им приходится мириться с тем фактом, что люди по–разному реагируют на один и тот же препарат. Любое лекарство дает целый спектр реакций, даже если пробуют его на группе людей с одним заболеванием одной и той же степени тяжести. Поэтому лучшее, что могут в большинстве случаев сделать ученые, — это разработать программу испытаний для группы людей, как можно сильнее похожих на того человека, которому они в будущем намерены давать или не давать данное лекарство. На самом деле врачи, как правило, не планируют эксперименты сами, так что сходство с реальным пациентом гарантировать трудно.
Иногда вместо этого врачи используют уже существующие результаты, где никто не проводил тщательных испытаний, а просто собраны данные наблюдений за существующими группами людей, такими как жильцы одного дома. Затем им придется столкнуться с проблемой правильной интерпретации результатов. С такими исследованиями иногда трудно бывает гарантировать, что проведенные измерения отражают причинно–следственные связи, а не случайные совпадения или корреляции. Так, заметив у многих пациентов с раком легких желтые пальцы, можно сделать ошибочный вывод о том, что именно желтизна пальцев — причина рака легких.
Поэтому ученые предпочитают исследования, в которых методы лечения или дозы назначаются случайным образом. К примеру, исследование, в котором люди будут принимать лекарство по результатам броска монетки, будет меньше зависеть от выборки: ведь то, будет ли данный пациент принимать препарат, полностью зависит от случая. Точно так же при помощи рандомизированного исследования можно установить связь между курением, раком легких и желтизной пальцев. Если бы можно было случайным образом предписать, кто из членов группы будет курить, а кто нет, вы бы поняли, что курение — это по крайней мере один из факторов и желтизны пальцев у пациентов, и рака легких; при этом не важно, является ли одно причиной другого. Но, разумеется, такой эксперимент был бы неэтичным.
Везде, где это возможно, ученые стремятся упростить систему и выделить таким образом те специфические явления, которые хотят изучить. И для точности, и для прецизионности результата очень важен подбор как группы испытуемых, так и контрольной группы. Такой сложный параметр, как действие лекарства на биологию человека, определяется одновременно множеством факторов. Очень важно также, насколько достоверные результаты исследования нам нужны.
С КАКОЙ ЦЕЛЬЮ ПРОВОДЯТСЯ ИЗМЕРЕНИЯ?
Измерения не могут быть идеальными. В научных исследованиях — как и при принятии любого решения — нам приходится определять для себя приемлемый уровень неопределенности. Только в этом случае можно двигаться вперед. К примеру, если вы принимаете лекарство и надеетесь, что оно облегчит вам сильную головную боль, то вам, возможно, достаточно знать, что это лекарство помогает обычному человеку в 75% случаев. С другой стороны, если изменение стиля питания ненамного снизит ваши и без того невысокие шансы заболеть чем‑нибудь сердечно–сосудистым (к примеру, с 5 до 4,9%), этого может оказаться недостаточно, чтобы убедить вас отказаться от любимых пирожных.
В политике точка принятия решения еще менее определенна. Как правило, общество смутно представляет, насколько хорошо нужно изучить вопрос, прежде чем менять законы или накладывать ограничения. Необходимые расчеты здесь осложнены множеством факторов. Как говорилось в предыдущей главе, из‑за неоднозначности целей и методов провести сколько‑нибудь достоверный анализ «затраты — прибыли» очень сложно, а иногда вообще невозможно.