Читаем Древняя Мексика без кривых зеркал полностью

Считается, что основание, равное двадцати, тоже имело вполне приземленную причину — количество пальцев на руках и ногах у стандартного человека (как и основание 10 по сумме пальцев на руках). И в принципе, основание не 10, а 20 для позиционной системы записи ничем не хуже. Тут все — дело привычки. Кому-то (скажем, как это было для компьютерщиков на заре кибернетики) проще ориентироваться, например, в восьмеричной и даже двоичной системе записи…

Для каждого разряда использовалось свое название — свой иероглиф: «кин», «винал», «тун», «катун» и так далее (типа как у нас — «единица», «десятка», «сотня», «тысяча»). Однако в отличие от привычной нам системы записи, у майя в их двадцатеричной было одно (достаточно странное) исключение — в одном месте основание вдруг менялось с 20 на 18. Причем почти сразу — буквально в следующем за первой двадцаткой разряде, а далее все возвращалось к той же самой двадцатке, что приводило к последовательности в виде:

Кин = 1

Виналь = 20 кинов = 20

Тун = 18 виналов = 360

Катун = 20 тунов = 7200

Бактун = 20 катунов = 144 000

Пиктун = 20 бактунов = 2 880 000

Калабтун = 20 пиктунов = 57 600 000

Кинчильтун = 20 калабтунов = 1152000000

Алавтун = 20 кинчильтунов = 23040000000

… и так далее.

В современных текстах о майя, чтобы не рисовать иероглифы, применяется более привычный нашему глазу метод записи их чисел, который использует точки для обозначения разрядов. Например: 3.12.11.0 — это 3 катуна, 12 тунов, 11 виналов, 0 кинов, что составляет число, равное 3х7200+12х360+11х20+0х1 = 26140.

Если, уважаемый читатель, Вы разобрались с этим, то это — все: вы уже усвоили полностью всю (!!!) «математику» майя!..

И бесполезно искать в майянских текстах что-то похожее на правила сложения дробей, как у древних египтян, или стандартизированные методы вычисления площадей трапеций, как у древних шумеров. Ничего подобного в индейских текстах нет!..

Тогда какая же это математика?!. Это — всего лишь система записи чисел, если использовать правильную терминологию!.. Не меньше, но и не больше!..

Например, многие восхищаются тем, что майя могли с помощью этой системы записывать очень большие числа. Ну, могли. Ну и что?… Это можно сделать с помощью абсолютно любой известной нам системы записи чисел. Только к термину «математика», и уж тем более к «развитому математическому знанию», это не имеет никакого отношения.

А где же тогда то самое хваленое «развитое математическое знание»?…

Его нет. Оно лишь в головах историков и различного рода «исследователей». Мираж, порожденный очередным кривым зеркалом преувеличений…

* * *

Г.Ершова в своей книге «Древняя Америка: полет во времени и пространстве» пишет: «Судя по свидетельствам испанцев, индейцы очень быстро считали и легко могли оперировать огромными числами. Согласно описаниям, математики, а также «бухгалтеры» майя пользовались оригинальным приспособлением из камешков наподобие счетов. Даже на древних изображениях мы видим сидящих рядом с правителями придворных, занятых важными хозяйственными подсчетами. Перед ними разложены мелкие предметы (камешки), в руке у каждого палочка».

Думаю, что, случайно или нет, Ершова привела весьма удачный образ для сравнения — бухгалтерские счеты, которые современное молодое поколение, возможно, уже и не знает, но которые очень широко использовались не только в бухгалтерии, но и в торговле непосредственно вплоть до замещения их калькуляторами. Дело в том, что в них используется фактически тот же самый принцип, на котором выстроена система записи чисел майя, — комбинированный аддитивно-позиционный принцип. Костяшки счетов представляют собой единицы, а проволочки, на которых расположены костяшки, — соответствующий разряд числа (только в нашей десятеричной системе).

Тому, кто знаком с приемом счета на бухгалтерских счетах (прошу прощения за невольный каламбур), не составит труда наглядно представить себе, как считали индейцы, удивившие этим испанцев. Как только в каком-то разряде (на какой-то проволочке) сумма единиц (костяшек) достигает десяти, они сбрасываются на ноль, а на следующем разряде добавляется единица (костяшка). Результат действия тут же представляется наглядным образом: количество костяшек на определенной проволочке — это значение числа в соответствующем разряде (количество единиц, десятков, сотен и так далее). Все предельно просто и без какой-либо «развитой математики».

Рис. 176. Счеты бухгалтерские (ХХ век нашей эры)

Удивление испанцев еще можно понять, ведь среди них не так много было математиков и профессиональных бухгалтеров или хотя бы ростовщиков, привыкших к оперативному счету. Среди конкистадоров преобладали искатели приключений и наживы, многие из которых вообще не умели толком писать и считать. Но нам-то чему удивляться и чем восхищаться?!.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже