Я, конечно же, не хочу сказать, что первые люди рисовали себе модель, похожую на эту. Но когда мы пытаемся имитировать человеческую мысль на компьютере или даже когда хотим решить новые научные задачи, рисование картинок с конкретными точками и стрелками всегда исключительно полезно. Эти диаграммы причинности – вычислительная суть механизма причинного вывода, который я описал во вступлении.
Три уровня причинности
Возможно, к этому моменту я создал впечатление, что способность организовывать знания, деля их на причины и следствия, едина и мы приобрели ее сразу. На самом деле, исследуя машинное обучение, я узнал, что для изучения причинно-следственных связей необходимо овладеть когнитивными навыками по крайней мере на трех конкретных уровнях – видения, делания и воображения.
Первый навык, видение или наблюдение, подразумевает умение определять закономерности в окружающей среде. Он присутствует у многих животных и был у первых людей до Когнитивной Революции. Второй навык, делание, связан с умением предсказывать, какой эффект вызовут намеренные изменения в окружающей среде, и выбирать, какие изменения надо внести, чтобы получить желаемый результат. Очень немногие виды продемонстрировали элементы этого навыка. Использование инструментов, если это сознательные действия, а не случайность и не копирование предков, может свидетельствовать о переходе на этот следующий уровень. Но даже у пользователей инструментов не всегда есть «теория», которая говорит, почему инструмент работает и что делать, если он не работает. Для этого необходимо достичь уровня понимания, который допускает воображение. Именно этот третий уровень в первую очередь подготовил нас к дальнейшим революциям в науке и сельском хозяйстве и резко преобразил воздействие нашего вида на планету.
Это я обосновать не могу, зато могу доказать математически, что три уровня фундаментально различны, и на каждом из них раскрываются способности, которых нет на предыдущих. Схема, которую я использую для демонстрации, восходит к Алану Тьюрингу, пионеру в исследовании искусственного интеллекта, предложившему классифицировать когнитивную систему, ориентируясь на вопросы, на которые она способна ответить. Такой подход оказался исключительно плодотворным, если говорить о причинности, потому что он позволяет избежать долгих и непродуктивных дискуссий о том, что именно представляет собой причинность, и сосредоточен на конкретном вопросе, на который реально ответить: что делает мыслитель, изучающий причинность? Или, если точнее, что может вычислить организм, имеющий модель причинности, тогда как организм, не имеющий модели причинности, это вычислить не в состоянии?
В то время как Тьюринг хотел создать бинарную классификацию, чтобы отличать человека от нечеловека, у нашей есть три уровня, соответствующих все более и более сложным причинным запросам. Используя эти критерии, можно собрать из запросов трех уровней одну Лестницу Причинности (рис. 3.) Мы будем еще не раз возвращаться к этой метафоре.
Давайте подробно рассмотрим каждую ее перекладину. На первом уровне – ассоциаций – мы ищем повторяющиеся детали в наблюдениях. Этим занимается сова, которая наблюдает, как двигается крыса, и анализирует, где грызун окажется через секунду. Этим же занимается компьютерная программа для игры в го – она изучает базу данных с миллионами игр и может вычислить, какие ходы связаны с более высоким процентом выигрыша. Мы говорим, что одно событие связано с другим, если наблюдение одного изменения повышает вероятность увидеть другое.
Рис. 3. Лестница Причинности с представляющими ее организмами на каждом уровне. Большинство животных, так же как и сегодняшние обучающиеся машины, находятся на первой перекладине – они учатся по ассоциации. Пользователи инструментов вроде первых людей находятся на второй перекладине – если действуют по плану, а не просто имитируют. Кроме того, на этом уровне можно ставить эксперименты, чтобы узнать, какой эффект дает интервенция. Предположительно именно так младенцы получают большинство знаний о причинности. Те же, кто учится с помощью контрфактивных рассуждений, находятся на верхней перекладине и могут вообразить несуществующие миры и назвать причины для наблюдаемых феноменов.