В главе 3 рассказывается равно любопытная история о том, как я обратился к причинности, работая над искусственным интеллектом — особенно над байесовскими сетями. Это был первый инструмент, который позволил компьютерам понимать «оттенки серого», и какое-то время я полагал, что они содержат главный ключ к искусственному интеллекту. К концу 1980-х годов я пришел к убеждению, что ошибался, и эта глава описывает мой путь от пророка до отступника. Тем не менее байесовские сети остаются очень важным инструментом для искусственного интеллекта и по-прежнему во многом определяют математическое основания для диаграмм причинности. Помимо постепенного знакомства с правилом Байеса и байесовскими методами рассуждения в контексте причинности, глава 3 представит увлекательные примеры того, как байесовские сети можно применить в реальной жизни.
Глава 4 рассказывает о главном вкладе статистики в причинный анализ — рандомизированном контролируемом исследовании (РКИ). С точки зрения причинности РКИ — это созданный человеком инструмент, позволяющий вскрыть запрос
Глава 5 повествует о поворотном моменте в истории причинности (и даже в истории всей науки), когда статистики столкнулись со сложностями, пытаясь выяснить, приводит ли курение к раку легких. Поскольку они не могли использовать свой любимый инструмент, РКИ, им было трудно прийти не только к единому выводу, но и к общему пониманию вопроса. Миллионы жизней оборвались или сократились из-за того, что ученым недоставало подходящего языка и методологии для ответов на вопросы о причинности.
Глава 6, надеюсь, даст читателям приятный повод отвлечься от серьезных вопросов из главы 5. Это глава о парадоксах — Монти Холла, Симпсона, Берксона и др. Классические парадоксы такого рода можно рассматривать как занимательные головоломки, однако у них есть и серьезная сторона, которая видна особенно хорошо, если взглянуть на них с точки зрения причинности. Более того, почти все они отражают столкновения с причинной интуицией и таким образом обнажают анатомию этой интуиции. Словно канарейки в шахте, они сигнализировали ученым, что человеческая интуиция укоренена в причинной, а не статистической логике. Я полагаю, читателям понравится новый взгляд на любимые парадоксы.
Главы 7–9 наконец-то позволят читателю совершить увлекательный подъем по Лестнице Причинности. Мы начнем в главе 7 с интервенции, рассказывая, как я со студентами 20 лет пытался автоматизировать запросы типа
Глава 8 поднимет вас на вершину лестницы, поскольку в ней рассматриваются контрфактивные суждения. Они считаются одной из необходимых составляющих причинности по меньшей мере с 1748 года, когда шотландский философ Дэвид Юм предложил для нее несколько искаженную дефиницию: «Мы можем определить причину как объект, за которым следует другой объект, если за всеми объектами, схожими с первым, следуют объекты, схожие со вторым. Или, другими словами, если бы не было первого объекта, второй бы не существовал». Дэвид Льюис, философ из Принстонского университета, умерший в 2001 году, указал, что на деле Юм дал не одно, а два определения: во-первых, регулярности (т. е. за причиной регулярно идет следствие) и, во-вторых, контрфактивности («если бы не было первого объекта…»). Хотя философы и ученые в основном обращали внимание на определение регулярности, Льюис предположил, что определение контрфактивности лучше сопрягается с человеческой интуицией: «Мы считаем причиной нечто, вызывающее перемену, и это перемена относительно того, что случилось бы без нее».
Читателей ждет приятный сюрприз: теперь мы можем отойти от научных дебатов и вычислить настоящее значение (или вероятность) для любого контрфактивного запроса — и неважно, насколько он изощрен. Особый интерес вызывают вопросы, связанные с необходимыми и достаточными причинами наблюдаемых событий. Например, насколько вероятно, что действие ответчика было неизбежной причиной травмы истца? Насколько вероятно, что изменения климата, вызванные человеком, являются достаточной причиной аномальной жары?