Этот пример заставил нас углубиться в тонкости причинно-следственных моделей, сильнее, чем где-либо выше в этой книге. Но позвольте мне сделать небольшое отступление и порадоваться чуду, которое стало возможным благодаря случаю с Элис. Используя комбинацию данных и модели, мы смогли предсказать поведение индивида (Элис) в полностью гипотетических условиях. Конечно, бесплатного сыра не бывает: мы получили такие веские результаты, потому что сделали веские допущения. Мы не только утвердили причинно-следственные связи между наблюдаемыми переменными, но и предположили, что функциональные связи были линейными. Но линейность здесь не так важна, как знание этих конкретных функций. Они позволили нам вычислить специфические особенности Элис по ее наблюдаемым характеристикам и обновить модель, как того требует трехэтапная процедура.
Рискуя несколько омрачить нашу радость, я должен сказать, что эта функциональная информация не всегда будет доступна на практике. В целом мы называем модель полностью заданной, если функции, выраженные стрелками, известны, и частично заданной — в иных случаях. Например, как и в байесовских сетях, мы можем знать только вероятностные отношения между родителями и детьми. Если модель задана частично, мы не оценим точно зарплату Элис; вместо этого нам, скорее всего, придется сделать утверждение с вероятностным интервалом, предположим: «Вероятность того, что ее зарплата составит 76 000 долларов, составляет 10–20 %». Но даже таких вероятностных ответов достаточно для многих случаев. Более того, действительно поражает, сколько информации мы в состоянии извлечь из диаграммы причинности, даже если у нас нет сведений о конкретных функциях, скрытых за стрелками, или есть лишь очень общие данные, скажем предположение о монотонности, с которым мы столкнулись в последней главе.
Шаги с 1 по 3, описанные выше, можно суммировать в первом законе причинного вывода, как я его называю:
О том, как важно видеть собственные допущения
Метод SCM, который я показал для вычисления контрфактивов, — не тот метод, который использовал бы Рубин. Основное различие между нами — применение диаграмм причинности. Они позволяют исследователям представить причинные допущения в терминах, которые они могут понять, а затем рассмотреть все контрфактивные утверждения как производные свойства от их модели мира. Причинная модель Рубина рассматривает контрфактивы как абстрактные математические объекты, которыми управляет алгебраический аппарат, а не производные от модели.
В отсутствие графического представления пользователь причинной модели Рубина обычно должен принять допущения. Первое из них, допущение о стабильном эффекте воздействия на единицу, достаточно прозрачно. В нем говорится, что каждый индивид (или единица — предпочтительный термин среди разработчиков причинных моделей) получит одинаковый эффект от лечения независимо от того, какое лечение получают другие индивиды (или единицы). Во многих случаях, если не считать эпидемии и другие коллективные взаимодействия, это имеет смысл. Например, если предположить, что головная боль не заразна, моя реакция на аспирин не будет зависеть от того, получит ли аспирин Джо.
Второе допущение в модели Рубина, тоже безобидное, называется постоянством. Оно подразумевает, что человек, который принял аспирин и выздоровел, также выздоровеет, если получит аспирин в экспериментальном порядке. Это разумное предположение, которое рассматривается как теорема в рамках SCM, фактически утверждает, что эксперимент лишен эффекта плацебо и других недостатков.