Теперь можно сформулировать вопрос, стоявший перед Райтом: каково прямое влияние продолжительности беременности
Рис. 12. Диаграмма причинности (путевая) для примера с весом при рождении
На рис. 12 прямое влияние обозначено путевым коэффициентом p, соответствующим пути
Сегодня мы можем обойтись вообще без математики и рассчитываем p посредством беглого изучения диаграммы. Но в 1920 году это был первый случай, когда математику призвали объединить корреляции и причинность. И это сработало! Райт вычислил, что p равно 3,34 грамма в день. Другими словами, если все другие переменные (
Приведенный пример преподает нам два урока. Первый: причинный анализ позволяет нам находить численные выражения реальных процессов в реальном мире, а не только структуры данных. Детеныши растут со скоростью 3,34 грамма в день, а не 5,66 грамма в день. Урок второй: следили вы за математикой или нет, но в путевом анализе мы делаем выводы об индивидуальных причинно-следственных отношениях, изучая диаграмму в целом. Чтобы оценить каждый индивидуальный параметр, может понадобиться структура всей диаграммы.
В воображаемом мире, где наука развивается логично, ответ Райта Найлзу должен был бы вызвать всеобщий научный восторг, а затем его методы с энтузиазмом стали бы применять другие ученые и статистики. Но судьба распорядилась иначе. «Одна из загадок истории науки в период с 1920 по 1960 годы — это практически полное отсутствие применения путевого анализа, за исключением самого Райта и селекционеров животных, — писал один из коллег Райта генетик Джеймс Кроу. — Хотя Райт продемонстрировал много примеров возможного применения своего метода, ни по одному из предложенных им путей никто не пошел».
Кроу не знал об этом, но такое загадочное умолчание коснулось и общественных наук. В 1972 году экономист Артур Гольдбергер оплакивал «постыдную неизвестность» работ Райта в тот период и отмечал, с энтузиазмом новообращенного, что «подход [Райта] стал искрой, воспламенившей нынешний интерес к каузальным моделям в социологии. Ах, если бы мы могли обратиться к современникам Райта и спросить — почему вы не обратили внимания? Кроу дает такой ответ: „путевой анализ не годится для программ-„консервов”. Пользователь должен самостоятельно сформировать гипотезу и создать годную диаграмму из множества причинных последовательностей”». Действительно, Кроу указал на важный момент: путевой анализ, как и любое упражнение в области причинно-следственных связей требует умения научно мыслить. Статистика же, как это часто случается, не поощряет его, способствуя появлению программ-«консервов», применяемых механически. Ученые всегда будут предпочитать рутинные вычисления на основе данных методам, которые бросают вызов их научным познаниям.