Отправная точка для байесовского правила — заметить, что данные можно было проанализировать в обратном порядке, т. е. мы могли бы заметить, что клиентов (1, 2, 5, 8, 12) заказали пирожные, а из них (1, 5, 8, 12) заказали чай. Таким образом, доля клиентов, которые заказали и чай, и пирожные, будет вычисляться так: ∙ =. Конечно, не случайно у нас получился один и тот же результат; мы просто вычислили одно и то же разными способами. Порядок, в котором клиенты объявляют свои заказы, не играет никакой роли.
Чтобы сделать из этого общее правило, пусть
Сначала мы вычисляем следующее:
Второй расчет выглядит так:
Как говорил Евклид 2 300 лет назад, две величины, каждая из которых равна третьей, также равны между собой. Это означает, что справедливо и следующее:
Это безобидное с виду уравнение стало известно как «правило Байеса». Если посмотреть на него внимательнее, то обнаружится, что оно предлагает общее решение для проблемы обратной вероятности. Оно говорит: если мы знаем вероятность
Чтобы увидеть, как правило Байеса действует в примере с чайной, предположим, что вы не потрудились вычислить
Также мы можем посмотреть на правило Байеса как на способ по-новому оценить нашу веру в определенную гипотезу. Это чрезвычайно важно понимать, потому что человеческие представления о событиях в будущем во многом опираются на частоту похожих событий в прошлом. Например, когда клиентка заходит в кафе, мы, ориентируясь на поведение похожих клиенток в прошлом, думаем, что, вероятно, она закажет чай. Но, если она сначала попросит пирожное, наша уверенность даже возрастет. Более того, возможно, мы предложим: «И чаю к пирожным?» Правило Байеса просто позволяет нам подкрепить эти рассуждения цифрами. Из табл. 1 видно, что предыдущая вероятность заказа чая (когда клиентка только вошла и еще ничего не заказала) равна. Но если клиентка заказывает пирожные, у нас появляется дополнительная информация о ней, которой не было раньше. В этом случае вероятность заказа чая (когда уже заказаны пирожные) выглядит так:
С математической точки зрения в этом и состоит правило Байеса. Оно кажется почти банальным. Здесь нет ничего, кроме понятия условной вероятности и небольшой дозы древнегреческой логики. Вы можете задать оправданный вопрос: как такая небольшая «фишка» сделала Байеса известным и почему люди спорили о ней 250 лет. В конце концов, математические факты должны разрешать противоречия, а не создавать их.
Здесь я должен признаться, что в примере с чайной, выводя правило Байеса из полученных данных, я опустил два весьма существенных возражения — одно философское и одно практическое. Философское возражение происходит из интерпретации вероятностей как степени веры, которую мы подспудно использовали в случае с чайной. Кто вообще сказал, что убеждения действуют или должны действовать как пропорциональные отношения данных?