Надеюсь, к этому моменту мне удалось разжечь ваше любопытство. Каким образом каузальные диаграммы превращают головную боль конфаундеров в веселую игру? Секрет лежит в операционном тесте на конфаундеры, называемом критерием черного хода. Этот критерий превращает проблему определения конфаундеров, их поиска и ввода поправок по ним в рутинную задачу, ничуть не более сложную, чем решение журнальной головоломки. Он привел столетнюю, упорную проблему к благополучному разрешению.
Оператор
Чтобы понять, как работает критерий черного хода, лучше сначала интуитивно представить себе, как двигается информация в каузальной диаграмме. Мне нравится представлять связи как трубы, по которым информация распространяется от стартовой точки
На самом деле некаузальные пути как раз и являются источником конфаундеров. Вспомним, что я определяю их как все, что вынуждает
В предыдущей главе мы рассмотрели три правила, которые рассказывают нам, как остановить поток информации по любому отдельно взятому соединению. Я повторю их, чтобы подчеркнуть:
а) в соединении типа «цепочка»
б) в вилке, или вмешивающемся соединении
в) в коллайдере
г) выравнивание по нисходящей или опосредованной переменной подобно частичному выравниванию по исследуемой переменной. Выравнивание по переменной, нисходящей по отношению к медиатору, частично закрывает трубу; выравнивание по переменной, нисходящей по отношению к точке схождения, частично открывает трубу.
А что же будет в случае более длинных труб с большим числом соединений, вроде такой:
Ответ очень прост: если хоть одна связь окажется заблокирована, то
Вот почему обычная статистическая процедура выравнивания по всем параметрам, которые только можно измерить, так ошибочна. На самом деле приведенный выше путь заблокирован даже в том случае, если мы не вводим никаких поправок! Коллайдеры к
Итак, чтобы устранить конфаундеры между
Вот и все! С этими правилами устранение конфаундеров становится настолько элементарным делом, что можно воспринимать его как игру. Я предлагаю вам несколько примеров, чтобы войти во вкус и увидеть, как это просто. Если вам все еще кажется, что это сложно, будьте уверены, что существуют алгоритмы, решающие все эти задачи в течение наносекунд. В каждом случае цель игры — определить набор переменных, которые устранят конфаундеры между
Игра 1
Эта — совсем простая! К