Радикально очеловеченный подход побуждает в корне изменить представления о ключевых компонентах цифровых инноваций: искусственном интеллекте, данных, экспертном знании, архитектуре и стратегии (IDEAS)[4]. Такой сдвиг предлагает организациям любой величины новую дорожную карту прогресса, позволяет проложить курс в будущее, многократно ускорить рост доходов и обеспечить себе конкурентное преимущество в мире, где человек и человечность станут одновременно и залогом, и мерилом успеха.
• Искусственный интеллект. Привычный нам метод машинного обучения не позволяет задействовать и осмыслить причинно-следственную связь, пространство, время и другие базовые понятия, которыми с легкостью оперирует человек, прокладывая себе путь в мире. Но в наши дни передовые исследовательские центры и компании разрабатывают устройства и приложения, которые способны на «мыслительную деятельность», во многом схожую с человеческим подходом к выполнению задач и решению проблем. Так, новое поколение роботов может обобщать данные о месте или среде – например, о пространстве склада – и манипулировать предметами, не дожидаясь команды. Можно рассмотреть и эмоциональный ИИ, выросший из практики общения с детьми-аутистами и ставший инструментом, который помогает им понять и выразить свои чувства. На этой основе сегодня разрабатывается новый автомобильный бортовой компьютер, который, вероятно, спасет не меньше жизней, чем ремень безопасности. Новые технологии задействуют самые мощные когнитивные способности человека – осведомленность и адаптивность, и со временем это обещает помочь в поиске решений насущных экономических и социальных задач.
• Данные. Глубокое обучение требует огромного массива данных и мощной инфраструктуры, что делает ИИ недоступным для многих организаций. Однако вскоре мы получим вертикально интегрированные системы, которым не нужны объемы данных. Они будут работать быстрее, применяться шире, а стоить – намного дешевле. Некоторые компании – например, мебельный онлайн-ретейлер Wayfair – успешно обучают ИИ-алгоритмы в таких сферах, где ранее информационный шум от обилия доступных товаров совершенно забил бы небольшие массивы актуальных данных. По мере эволюционирования искусственного интеллекта научные и коммерческие организации разрабатывают новые приемы и методы: от повторного использования данных в системе и активного обучения (система сама подсказывает, какие данные ей для этого необходимы) до синтетических данных, которые создаются, когда реальных не существует. Размеры, форматы, источники и способы применения данных меняются, и в ходе этого процесса предприниматели получают ценный опыт и дополнительное пространство для маневров на рынке.
• Экспертное знание. Разворот к человеку в сфере «умных» технологий в корне меняет многие представления о роли людей и накопленного ими опыта в новых цифровых экосистемах. Здесь мы наблюдаем один из наиболее значительных сдвигов: от машинного обучения путем обработки огромных массивов данных до наставничества, когда машина обучается под руководством человека с его знанием, опытом и чутьем. Человек обучает машину не «снизу вверх» (от частного к общему), а «сверху вниз», прививая чисто искусственной системе элементы живого природного интеллекта. Например, в компании Royal Dutch Shell инженер или другой штатный специалист дополняют базовый уровень машинного обучения еще одной высокоуровневой программой. Такой метод резко сокращает время на обучение системы правильным действиям при внезапной смене внешних условий. Корпорация Tesla обучает автомобильные бортовые компьютеры с функцией автопилота на примере сотен тысяч водителей. Торговая интернет-платформа Etsy разработала систему рекомендаций и подсказок на основе эстетических категорий, для чего экспертам пришлось обучить искусственный интеллект субъективным представлениям о стиле. Оказавшись в роли наставников машины, специалисты любого уровня и профиля находят накопленному опыту новое применение и, в свою очередь, помогают творчески использовать «умные» инструменты.