Читаем Движение. Теплота полностью

Свойства идеального газа, давшего нам определение температуры, очень просты. При постоянной температуре действует закон Бойля – Мариотта: произведение pV при изменениях объема или давления остается неизменным. При неизменном давлении сохраняется частное V/T, как бы ни менялись объем или температура. Эти два закона легко объединить. Ясно, что выражение рV/Т остается тем же, как при постоянной температуре, но изменяющихся V и p, так и при постоянном давлении, но изменяющихся V и T. Выражение pV/T остается постоянным при изменении не только любой пары, но и одновременно всех трех величин – р, V и T. Закон (pV)/T = const, как говорят, определяет уравнение состояния идеального газа.

Идеальный газ выбран в качестве термометра потому, что только его свойства связаны с одним лишь движением (но не с взаимодействием) молекул.

Каков же характер связи между движением молекул и температурой? Для ответа на этот вопрос надо найти связь между давлением газа и движением в нем молекул.

В сферическом сосуде радиуса R заключено N молекул газа (рис. 95). Последим за какой-либо молекулой, например той, что движется в данный момент слева направо вдоль хорды длиной l. На столкновения молекул обращать внимания не будем: такие встречи не сказываются на давлении. Долетев до границы сосуда, молекула ударится о стенку и с той же скоростью (удар упругий) понесется уже в другом направлении. В идеале такое путешествие по сосуду могло бы продолжаться вечно. Если v – скорость молекулы, то каждый удар будет происходить через l/v секунд, т.е. в секунду каждая молекула ударится v/l раз. Непрерывная дробь ударов N молекул сливается в единую силу давления.

По закону Ньютона сила равна изменению импульса в единицу времени. Обозначим изменение импульса при каждом ударе через Δ. Это изменение происходит v/l раз в секунду. Значит, вклад в силу со стороны одной молекулы будет (Δ/lv.

На рис. 95 построены векторы импульсов до и после удара, а также вектор приращения импульса Δ. Из подобия возникших при построении треугольников следует: Δ/l = mv/R. Вклад в силу со стороны одной молекулы примет вид:

Так как длина хорды не вошла в формулу, то ясно, что молекулы, движущиеся по любой хорде, дают одинаковый вклад в силу. Конечно, изменение импульса при косом ударе будет меньше, но зато удары в этом случае будут чаще. Расчет показал, что оба эффекта в точности компенсируются.

Так как в сфере N молекул, то суммарная сила будет равна:

где vср – средняя скорость молекул.

Давление р газа, равное силе, поделенной на площадь сферы 4πR2, будет равно:

где V – объем сферы.

Таким образом,

Это уравнение было впервые выведено Даниилом Бернулли в 1738 г.*11.

Из уравнения состояния идеального газа следовало: pV = const·T; из выведенного уравнения видим, что pV пропорционально vср2. Значит,

т.е. скорость молекулы идеального газа пропорциональна корню квадратному из абсолютной температуры.

<p>Закон Авогадро</p>

Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?

Механика дает ответ на этот вопрос. Можно доказать, что одинаковыми у всех молекул будут средние кинетические энергии поступательного движения mvср2/2 .

Это означает, что при данной температуре средние квадраты скорости молекул обратно пропорциональны массе частиц:

Вернемся теперь к уравнению pV = (1/3)Nmvср2. Так как при данной температуре величины mvср2 одинаковы для всех газов, то число молекул N, заключенных в данном объеме при определенных давлении p и температуре T, одинаково для всех газов. Этот замечательный закон был впервые сформулирован Авогадро.

Сколько же молекул приходится на 1 см3? Оказывается, в 1 см3 при 0 °C и 760 мм Hg находится 2,7·1019 молекул. Это огромное число. Чтобы вы почувствовали, сколь оно велико, приведем такой пример. Положим, что газ удаляется из маленького сосудика объемом 1 см3 с такой скоростью, что в каждую секунду уходит миллион молекул. Нетрудно подсчитать, что сосуд полностью освободится от газа через миллион лет!

Закон Авогадро указывает, что при определенных давлении и температуре отношение числа молекул к объему, в котором они заключены, N/V есть величина, одинаковая для всех газов.

Так как плотность газа ρ = (N/V)m, то отношение плотностей газов равно отношению их молекулярных весов:

Перейти на страницу:

Все книги серии Физика для всех

Движение. Теплота
Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Нет соединения с сервером, попробуйте зайти чуть позже