Читаем Эдисон полностью

Необходимо подчеркнуть, что многие выдающиеся физики и химики Европы и Америки решительно возражали против самой возможности «дробления световой энергии». В Англии парламент назначил даже специальную комиссию из крупнейших ученых для решения этого вопроса. Заключение ее было крайне неблагоприятно. Комиссия высказалась в том смысле, что деление электрического света представляет собой задачу, для человека непосильную.

«Свеча Яблочкова» не только открыла эпоху электрического освещения, но и была первой точкой, в которую поступала только небольшая порция всей электрической энергии, создаваемой генератором.

Дуговые лампы до сих пор применяются в прожекторах, кинопроекторах, маяках и т. п.

Однако мощность дуговых ламп была велика, стоимость эксплуатации слишком высока. Изобретательская мысль работала по пути создания электрической лампы накаливания.

Опыты показали, что большинство раскаленных проводников окисляется настолько быстро, что абсолютно невозможно продолжительно накаливать их в воздухе. В результате многочисленных исследований определенно наметились два пути, которые легли в дальнейшем в основу всех работ по созданию электрических источников света. Эти два пути, которые не потеряли своего значения и до настоящего времени, заключаются, с одной стороны, в стремлении найти тела, наиболее тугоплавкие и неизменяющиеся при высокой температуре, а с другой – в создании таких условий, при которых раскаленное тело не подвергалось бы разрушительному действию кислорода. Это последнее условие достигается либо выкачиванием из баллона лампы содержащегося в ней воздуха, либо наполнением ее инертным газом. Первым металлом, который пытались применить в качестве калильного тела в электрических лампах, была платина. Точка плавления ее сравнительно высока, около 1750° С. В то же время платина не изменяется на воздухе даже при температуре каления.

В 1840 году изобретатель гальванического элемента Грове построил лампу (очень примитивной конструкции), в которой в качестве калильного тела была применена платина в виде спирали. Дороговизна платины, а также ее способность плавиться при напряжении лампы выше известного предела заставили искать другие тела накаливания. Внимание изобретателей направилось в сторону угля, могущего при известной температуре дать высокую мощность световых излучений.

Уголь обладает свойством переносить высокую температуру, не расплавляясь. Лишь при температуре около 3 300° С он переходит в размягченное состояние. Это важное свойство угля, а также его большая распространенность в природе по сравнению с дорогою платиною делали его очень подходящим материалом для изготовления калильных тел в электрических лампах. Однако уголь, получающийся непосредственно обугливанием органических веществ, не мог быть применен для этой цели вследствие своей пористости. Пришлось заняться отысканием специальных сортов угля. С другой стороны, уголь при накаливании жадно соединяется с кислородом, в присутствии которого сгорает. Это обстоятельство требовало создания таких условий, при которых не происходило бы это окисление. Естественным в данном случае выходом являлось накаливание угольной нити в среде, лишенной кислорода. Решение этой задачи пошло прежде всего по пути создания пустотных (вакуумных) электрических ламп накаливания.

В 1846 году Гебель построил первую угольную лампу. В этой лампе впервые в качестве калильного тела была применена нить, приготовленная из обугленных волокон бамбукового тростника. Чтобы предохранить нить от сгорания, Гебель помещал ее в стеклянный баллон, из которого удалялся воздух. Для этого баллон лампочки вместе с припаянной к ней трубкой предварительно наполнялся ртутью. Затем трубка открытым концом погружалась в ртуть, налитую в широкий сосуд. Благодаря этому в баллоне образовывалась барометрическая пустота, которая является тем вакуумом, при котором изобретатели пытались достигнуть предохранения угольного стерженька от окисления. Однако получившийся таким образом в баллоне вакуум был недостаточен, и угольный стерженек быстро перегорал. Потребовалось еще свыше тридцати лет, прежде чем идея Гебеля нашла свое практическое воплощение в работах Лодыгина и Эдисона, который вывел угольную лампу из лаборатории на широкую дорогу практического ее применения.

После первых успехов фонографа Эдисон решил в июле 1878 года недолго отдохнуть. Он принял участие в научной экспедиции астрономов в Раулинс (штат Вайоминг) для специальных наблюдений солнечного затмения. Эдисон решил испытать при этом свой тазиметр, о котором мы говорили выше. Затем он отправился на охоту в Колорадо. После двухмесячного отдыха изобретатель чувствовал себя готовым к новой борьбе, к новым исследованиям.

Перейти на страницу:

Похожие книги

50 знаменитых царственных династий
50 знаменитых царственных династий

«Монархия — это тихий океан, а демократия — бурное море…» Так представлял монархическую форму правления французский писатель XVIII века Жозеф Саньяль-Дюбе.Так ли это? Всегда ли монархия может служить для народа гарантией мира, покоя, благополучия и политической стабильности? Ответ на этот вопрос читатель сможет найти на страницах этой книги, которая рассказывает о самых знаменитых в мире династиях, правивших в разные эпохи: от древнейших египетских династий и династий Вавилона, средневековых династий Меровингов, Чингизидов, Сумэраги, Каролингов, Рюриковичей, Плантагенетов до сравнительно молодых — Бонапартов и Бернадотов. Представлены здесь также и ныне правящие династии Великобритании, Испании, Бельгии, Швеции и др.Помимо общей характеристики каждой династии, авторы старались более подробно остановиться на жизни и деятельности наиболее выдающихся ее представителей.

Валентина Марковна Скляренко , Мария Александровна Панкова , Наталья Игоревна Вологжина , Яна Александровна Батий

Биографии и Мемуары / История / Политика / Образование и наука / Документальное