Читаем Эфир. Русская теория. полностью

Иная судьба — у сернокислого остатка: добравшись до анода, он оторвет от него атом металла (той же меди), уйдет с ним в раствор, и там они разойдутся; оголенный ион меди устремится в долгий путь к катоду навстречу идущим к нему электронам, а сернокислый остаток вернется к аноду и повторит свои действия. Если бы не было перемешивания электролита, то все кислотные остатки сгрудились бы рано или поздно возле анода и переводили бы материал анода в атомарное состояние; и только наличие кислотных остатков во всем пространстве раствора (а это достигается перемешиванием) способствует смещению ионов меди до самого упора в катод.

Более сложные процессы с движениями ионов происходят в гальванических элементах, например в элементе Вольта, который представляет собой медный и цинковый электроды, помещенные в раствор серной кислоты. Особенность процесса состоит в том, что сернокислый остаток по-разному соединяется с медью и цинком . Когда он отрывает от электрода атом меди и присоединяет его к себе, то вместе с ним увлекает и все электроны, что были прежде а нем; в результате плотность электронов на электроде снижается. В физике такая способность атомов металлов либо забирать электроны с собой, либо, наоборот, их отдавать характеризуется абсолютным нормальным потенциалом; у меди он равен плюс 0,61 Вольта.

Когда же происходит соединение сернокислого остатка с атомом цинка другого электрода, то все наружные электроны атома и часть их остатка отжимаются и сдвигаются на электрод; в результате плотность электронов на нем увеличивается (абсолютный нормальный потенциал цинка равен минус 0,50 Вольта). Такие особенности окисления вызваны только конфигурациями атомов меди и цинка и их присасывающими желобами; эти свойства металлов постоянны и неизменны.

После того, как образовались молекулы медного и цинкового купоросов, они уходят в раствор и там, спустя некоторое время, распадаются под действием воды на ионы. При распаде молекул их электроны перераспределяются между ионами следующим образом: сернокислый остаток медного купороса оттягивает на себя большую часть электронов с атома меди и приобретает очень высокую их плотность, а сернокислый остаток молекулы цинкового купороса, забрав последние электроны с иона цинка, оголяет его начисто. Это приводит к тому, что между сернокислым остатком медного купороса и ионом цинка появляется поток электронов; он уменьшает эфирное давление между ними, и они устремляются друг к другу. Столкнувшись и соединившись, они образую снова молекулу цинкового купороса, и снова цинк вытесняет все электроны. Но, обратим внимание на то, что эти электроны уже совершили скачок от медного электрода в сторону цинкового; так они будут шаг за шагом перемещаться в этом направлении, пока их не остановит разность электронных потенциалов на электродах. Если эту разность понижать путем использования электронного тока, то гальванический процесс будет продолжаться до тех пор, пока весь медный электрод не выпадет в атомарный осадок, или весь цинк не превратится в купорос.

Электронный поток — электрический ток

То, что электрический ток представляет собой электронный поток и что им движет только активный перепад электронного давления, мы уже говорили; уточним некоторые моменты, связанные с ним, и будем их рассматривать по-прежнему с позиций эфирной теории.

Прежде всего — об электронном потоке: в электрофизике сложилось мнение, что кроме электронной проводимости существует еще ионная. В принципе так можно говорить, но мы должны четко представлять, что ионы, то есть атомы или молекулы с ненормальной плотностью электронов, являются всего лишь носителями или, просто, посредниками; сам же электронный поток нигде не прерывается. В этом смысле наряду с понятием электронной проводимости можно было бы употреблять выражение «металлическая проводимость».

Что касается активного перепада электронного давления, то он может возникать как от нагнетания электронов, так и при отсосе. Первый случай подобен нагнетанию воздуха с помощью компрессора, а второй — его откачке с помощью вакуум-насоса. При нагнетании электронов передняя волна давления будет выглядеть как местное уплотнение электронов, и это уплотнение будет быстро смещаться по проводнику в направлении от источника давления; это — наиболее распространенный случай. При отсосе электронов переднюю волну давления правильно было бы назвать волной разряжения, и она смещается с той же скоростью в направлении к источнику; это — так называемая дырочная проводимость.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже