Читаем Его сиятельство атом полностью

В 1934 г. множество ядерных реакций осуществили известные французские ученые, супруги Ирен (1897–1956) и Фредерик (1900–1958) Жолио-Кюри. При облучении α-частицами атомов легких металлов (бора, алюминия, магния) они вначале получали не просто другие элементы, а неизвестные ранее радиоактивные изотопы. Некоторые элементы имеют изотопы, распадающиеся очень быстро – за часы, минуты, даже секунды. Поэтому в природе такие «короткоживущие» изотопы не наблюдаются. В опытах супругов Жолио-Кюри новые изотопы быстро распадались, после чего возникало устойчивое ядро одного из химических элементов.

В результате этих экспериментов было получено более 50 ранее не известных радиоактивных изотопов. Чтобы характеризовать скорость их естественного распада, ввели понятие «период полураспада». Это время, за которое распадается половина количества данного радиоактивного вещества. За такое же время распадается половина оставшегося, затем за то же время еще половина оставшегося и т. д. Этот закон открыл Резерфорд.

На Первой Всесоюзной конференции по атомному ядру, организованной Ленинградским физико-техническим институтом в 1933 г. в Москве, кроме известных советских физиков присутствовали Фредерик Жолио-Кюри, Поль Дирак и другие иностранные специалисты в области ядерной физики. Председателем организационного комитета и фактическим инициатором конференции был Игорь Васильевич Курчатов (1903–1960) – советский физик, академик, основатель Института атомной энергии. Доклады советских ученых показали, что в области изучения атомного ядра они уже вышли на международный уровень.

В наше время одним из основных центров по ядерным реакциям является международный межправительственный Объединенный институт ядерных исследований (ОИЯИ, г. Дубна Московской области). Учредители ОИЯИ – 18 стран, специалисты которых работают на базе института. Всего в Дубне российские физики синтезировали 6 не существующих в природе трансурановых элементов, т. е. элементов с ядрами тяжелее элемента урана. Еще несколько трансурановых ядер получены совместно или пока не утверждены международным сообществом. У всех у них период полураспада существенно меньше возраста Земли, поэтому в природе они не обнаружены.

Среди торжественно утвержденных (прошедших инаугурацию) элементов 114-й получил имя «флеровий» в честь академика Георгия Николаевича Флерова (1913–1990), одного из организаторов ОИЯИ, ученика и соратника Курчатова.

Физики всего мира принялись подбирать наиболее эффективные частицы для осуществления ядерных реакций и создавать установки для их «разгона», увеличения их скорости. В СССР этой проблемой занималась группа Курчатова и связанные с ним лаборатории.

Чем меньше положительный заряд частицы, тем у нее больше шансов «внедриться» в отталкивающее ее положительное ядро. Для ядерной бомбардировки начали использовать протоны и дейтоны (ядра дейтерия), имеющие единичный положительный заряд. И приступили к исследованию влияния пучка быстрых электронов.

Разгонялись заряженные частицы в электрическом поле.

Весной 1932 г. была получена первая ядерная реакция на искусственно ускоренных частицах. Джон Кокрофт (1897–1967) и Эрнест Уолтон (1903-1995) в Кембридже (Великобритания) создали генератор постоянного напряжения в 700 киловольт. Пучок ускоренных в генераторе протонов направили на мишень из лития-7. Ядро лития захватывало протон и затем разваливалось на две α-частицы. Осенью этого же года эксперимент повторили сотрудники Украинского физико-технического института (г. Харьков).

Ускорители легких заряженных частиц (электронов, протонов) делятся на линейные и циклические (циклотроны).

В линейных ускорителях частицы проходят ускорение однократно, двигаясь в электрическом поле, которое постепенно разгоняет их все сильнее. Чаще всего линейные ускорители используются для легких частиц – электронов и протонов. В наше время они применяются не только в ядерной физике, но и в медицине, материаловедении, даже в стерилизации продуктов.

В конце 2020-х гг. планируется создать Международный линейный коллайдер (ускоритель со встречными пучками сталкивающихся частиц) на территории Японии. Это фантастическое сооружение будет иметь общую длину 31 км и состоять из двух частей. В одной станут ускоряться электроны, в другой – получаться встречный пучок таких же легких, но положительно заряженных частиц – позитронов. Ускоряющее поле первоначально будет измеряться в гигавольтах (109 вольт – посмотри такие обозначения в главе 1), потом возрастет до теравольт (1012 вольт).

Создать гигантскую электрическую разность потенциалов очень непросто, к тому же линейный ускоритель имеет достаточно большую длину. Этих недостатков лишены циклотроны.

Перейти на страницу:

Все книги серии Книга за книгой

Похожие книги

Кто бы мог подумать! Как мозг заставляет нас делать глупости
Кто бы мог подумать! Как мозг заставляет нас делать глупости

Книга молодого научного журналиста Аси Казанцевой — об «основных биологических ловушках, которые мешают нам жить счастливо и вести себя хорошо». Опираясь по большей части на авторитетные научные труды и лишь иногда — на личный опыт, автор увлекательно и доступно рассказывает, откуда берутся вредные привычки, почему в ноябре так трудно работать и какие вещества лежат в основе «химии любви».Выпускница биофака СПбГУ Ася Казанцева — ревностный популяризатор большой науки. Она была одним из создателей программы «Прогресс» на Пятом канале и участником проекта «Наука 2.0» на телеканале Россия; ее статьи и колонки публиковались в самых разных изданиях — от «Троицкого варианта» до Men's Health. «Как мозг заставляет нас делать глупости» — ее первая книга.

Анастасия Андреевна Казанцева , Ася Казанцева

Научная литература / Биология / Биохимия / Психология / Образование и наука