Свободные радикалы наносят клетке не столь сильный ущерб, как это принято думать. Наш организм синтезирует большое количество ферментов-антиоксидантов, которые уничтожают агрессоров, а на страже клеточного благополучия стоят компенсаторные механизмы, которые никогда не прекращают работать. Однако связанные с процессом старения свободные радикалы атакуют именно митохондрии. Главным объектом атаки является именно уязвимая ДНК митохондрий, у которой нет таких восстановительных механизмов, какими обладают другие компоненты клетки. Когда митохондрия не успевает восстановиться под накапливающимися ударами свободных радикалов, она становится дисфункциональной, и это — первый шаг к старению. В сущности, рассматриваемая нами теория говорит о том, что митохондрии представляют собой биологические часы. Цепь событий выглядит примерно так: свободные радикалы разными путями (некоторые из них мы рассмотрели выше) выскальзывают из респираторной цепи (ЭТЦ) и атакуют митохондриальную ДНК, находящуюся в непосредственной близости от них, что ведет к мутациям, которые могут нарушить работу внутриклеточного генератора энергии. По мере увядания и гибели митохондрий клетка как целое также лишается жизнеспособности и перестает выполнять свои функции. Утратив источник энергии, клетка вступает в процесс апоптоза. Когда таких клеток становится много, начинается разрушение той или иной ткани (того или иного органа).
Нарастание случайных мутаций митохондрий в организме ведет к
С биоэнергетической точки зрения некоторые ткани стареют очень быстро, другие — со средней скоростью, а третьи — весьма медленно. Это относится и к целостным организмам — два человека одного и того же хронологического возраста могут сильно отличаться друг от друга по биологическому возрасту.
Согласно теории Линана, именно вызванное мутациями митохондрий биоэнергетическое увядание является основным фактором дегенеративных болезней и старческой немощности. Результаты современных исследований говорят о том, что митохондрии — ключ к клеточному старению и базовый источник витальности клеток, что подтверждает сформулированные Линаном идеи.
В ходе эволюции каждый вид получил оптимальную именно для него скорость появления свободных радикалов. Митохондрии птиц, как отмечает Лэйн, формируют сравнительно мало свободных радикалов и поэтому живут долго, несмотря на быстрый обмен веществ. Почему же, задается он вопросом, не все виды обладают такими замечательными митохондриями? Несомненно, крысы в первую очередь выиграли бы от сокращения числа свободных радикалов, потому что тогда им не пришлось бы тратить гигантские ресурсы на выработку огромного количества антиоксидантов. Разумный вопрос. Ответ на него радикально отличает митохондриальную теорию от теории свободных радикалов (такой вот получился каламбур).
Помните причину существования отдельных копий ДНК в митохондриях? Речь идет о необходимости сбалансировать процесс окислительного фосфорилирования, так как нарушение последовательной работы комплексов и компонентов ЭТЦ приводит к нарушению клеточного дыхания и массовой утечке супероксидов. Сохранив набор важных генов, каждая митохондрия контролирует собственное дыхание, основываясь на своих потребностях (а не на потребностях других митохондрий).
Также напоминаю, что сигнал о синтезе новых компонентов для ЭТЦ поступает от самих свободных радикалов. Возможно, именно поэтому крысы нуждаются в их повышенном количестве: если бы грызуны обладали более плотно закрытыми митохондриями, сигналы их свободных радикалов были бы ослаблены массой антиоксидантов, а для их различения потребовалась бы более совершенная система опознавания.