Читаем Эйлер. Математический анализ полностью

Жизнь Эйлера можно разделить на четыре основных периода: первый, до 1727 года — обучение; затем 14 лет в Академии наук, основанной Петром I в Санкт-Петербурге; до 1766 года — работа в Берлинской академии наук; наконец, возвращение в Россию, где он и умер. В конце первого периода, ознаменовавшегося знакомством с братьями Бернулли, которые разглядели в ученом интерес к анализу, Эйлер сделал одно из самых важных своих открытий — формулу, позже названную его именем. При помощи математической константы е она связывает комплексное число i и тригонометрические функции синус и косинус:

exi = cosx + isinx.

Число е, лежащее в основании натуральных логарифмов, часто встречается в работах Эйлера и иногда называется числом Эйлера. Несколько десятилетий спустя на основе этой формулы ученый развил большую часть своих работ по анализу.

Первый русский период Эйлера можно считать самым плодотворным в его научном творчестве. Как можно предположить, зная о продуктивности Эйлера, открытия, совершенные в это время, настолько многочисленны, насколько и удивительны.

Только в области анализа ученый нашел способ точного вычисления числа е и определил многие его свойства; открыл гамма-функцию (Г), которая позволяет интерполировать значения функций определенного вида и используется в комбинаторике, теории вероятностей, теории чисел и физике; открыл формулу Эйлера — Маклорена для вычисления сумм и интегралов; решил (и впоследствии обобщил полученные результаты) Базельскую задачу, поставившую вопрос о сумме ряда

1 + 1/2 + 1/3 + 1/4 + ...

К этому же периоду относятся важные работы по теории чисел, такие как определение постоянной Эйлера — Мас- керони, изучение так называемых чисел Ферма и решение задачи о мостах Кенигсберга в 1736 году, приведшее к созданию совершенно новой области математики — теории графов. В 1741 году Эйлер принял предложение Фридриха Великого, короля Пруссии, и переехал в Берлин. Ученый продолжал делать одно открытие за другим. Среди них мы можем упомянуть о формуле для многогранников, связывающей грани (F), ребра (S) и вершины ( V) многогранника простым и неожиданным для геометров того времени образом:

C - A + V = 2,

а также определение прямой Эйлера. К этому периоду относятся работы над проблемой Гольдбаха, самой знаменитой теоремой о числах после Великой теоремы Ферма, и исследования в области вариационного исчисления, имевшего огромное значение для физики. Именно в Берлине Эйлер написал трактаты, посвященные анализу (возможно, это самые гениальные его сочинения), а также труды по инженерному делу и механике.

Последний этап своей жизни Эйлер вновь провел в Санкт- Петербурге. Ему было уже больше 50 лет, он испытывал большие трудности со зрением, но до самой смерти продолжал писать научные статьи. Ставший легендой мировой математики еще при жизни, в этот период Эйлер в основном занимался теорией чисел, в частности простыми числами (и связанными с ними, такими как числа Мерсенна и дружественные числа), диофантовыми уравнениями и разбиением множеств. Он также нашел время для более легкомысленных задач — магических квадратов и других математических игр — и даже создал игру для детей (круги Эйлера), дошедшую до наших дней. Кроме того, он написал превосходную научно-популярную работу о вопросах механики и астрономии, которую посвятил принцессе Ангальт-Дессау.

1707 15 апреля в Базеле, Швейцария, родился Эйлер.

1720 При поддержке Иоганна Бернулли Эйлер в возрасте всего лишь 13 лет поступает в Базельский университет.

1723 Получает степень магистра философии за сравнительный анализ идей Декарта и Ньютона.

1727 Не получив место профессора физики в Базельском университете, переезжает в Россию.

1731 Становится профессором физики в Петербургской академии наук. Положение, которое он теперь занимает, делает его фигуру одной из самых влиятельных среди ученых.

1734 Женится на Катерине Гзель, дочери художника Академии. У них будет 13 детей, из которых выживут только пять.

1735 Ученый начинает терять зрение, что, тем не менее, не мешает ему решить знаменитую Базельскую задачу и прославиться в научном мире.

1736 Выходит первая книга Эйлера. Он решает задачу о мостах Кенигсберга. Известность ученого продолжает расти.

1741 Принимает предложение Фридриха II, короля Пруссии, и вместе с семьей переезжает в Берлин, где получает место в Академии.

1742 Эйлер и Гольдбах в переписке обсуждают задачу, позже названную проблемой Гольдбаха.

1748 Эйлер публикует один из самых известных своих трудов — 4 Введение в анализ бесконечно малых", — в котором рассматривает в основном математические функции.

1755 Издается еще одна фундаментальная работа ученого — "Дифференциальное исчисление".

1766 Вследствие идейных расхождений с Фридрихом II Эйлер снова уезжает в Россию.

1768 Выходит третье сочинение Эйлера

1770 по математическому анализу — "Интегральное исчисление".

Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука