Читаем Эйнштейн. Его жизнь и его Вселенная полностью

Неясно, насколько внимательно Эйнштейн прочитал статью, которую Гильберт послал ему, или что в ней повлияло на ход его мыслей, если вообще повлияло, когда он лихорадочно готовил свою кульминационную четвертую лекцию для Прусской академии. Как бы ни было дело, сделанные неделей ранее расчеты по орбите Меркурия и по искривлению лучей света помогли ему понять, что он мог избежать ограничений и условий на координаты, которых он требовал от своих уравнений гравитационного поля. Таким образом, к 25 ноября 1915 года – как раз к его последней лекции, называвшейся “Полевые уравнения гравитации”, – он подготовил систему ковариантных уравнений, увенчавших его общую теорию относительности.

Для неспециалиста этот результат был совсем не таким ярким, как, скажем, его знаменитое уравнение E = mc2. Тем не менее длинные сложные выражения оказалось возможно упростить с помощью компактной записи тензоров с индексами, и суть окончательных полевых уравнений Эйнштейна можно записать в таком компактном виде, что их можно печатать на футболках пижонистых студентов-физиков (что часто и делается). В одном из многочисленных его вариантов82 уравнение можно записать в виде:

R– 1/2g R=8T.

В левой части уравнения стоит величина R – тензор Риччи, который Эйнштейн ввел ранее; g – крайне важный метрический тензор, а член R является следом тензора Риччи и называется скаляром Риччи. Всю левую часть уравнения сейчас принято называть тензором Эйнштейна, и она может быть записана в сжатом виде просто как G. Она несет всю информацию о том, как пространство – время деформируется и искривляется массивными объектами.

Правая часть описывает движение материи в поле тяготения. Взаимодействие правой и левой частей уравнения показывает, как объекты искривляют пространство – время и, в свою очередь, как эта кривизна влияет на движение объектов. Физик Джон Уилер выразил это так: “Материя говорит пространству – времени, как изогнуться, а искривленное пространство говорит материи, как двигаться”83.

Таким образом, вместе они танцуют космическое танго, или, как сформулировал это другой физик, Брайан Грин, “пространство и время стали игроками в эволюционирующем космосе. Они ожили. Материя здесь заставляет пространство деформироваться там, что вызывает движение материи здесь, а это, в свою очередь, побуждает пространство поодаль деформироваться еще больше, и т. д. Общая теория относительности стала хореографом постановки причудливого космического танца пространства, времени, материи и энергии”84.

Наконец, к его удовлетворению, у Эйнштейна появились по-настоящему ковариантные уравнения, в которые включены по крайней мере все формы движения – как инерционное, так и ускоренное, вращательное и произвольное. Как он заявил в официальной презентации своей теории, которую он опубликовал в марте следующего года в Annalen der Physik, “общие законы природы должны быть выражены через уравнения, справедливые во всех системах координат, то есть эти уравнения должны быть ковариантными относительно любых подстановок (общековариантными)” [54],85

Эйнштейн был в восторге от своего успеха, но в то же время беспокоился, что Гильберт, который представил в Геттингене свою собственную версию уравнений на пять дней раньше, получит часть почестей как соавтор теории. “Только один коллега в действительности понял ее, – писал он своему другу Генриху Цангеру, – и он ищет умные способы присвоения (нострификации – по выражению Абрагама) [55]. Исходя из моего личного опыта я вряд ли узнаю что-то новое об убогости человечества”. В письме к Бессо через несколько дней он добавил: “Мои коллеги ведут себя омерзительно в этом деле. Ты здорово повеселишься, когда я расскажу тебе об этом”86.

Так кто на самом деле заслуживает заслуги быть первым в выводе окончательных математических уравнений? Вопрос, кому принадлежит приоритет, Эйнштейну или Гильберту, породил небольшие, но горячие исторические дискуссии, некоторые из которых ведутся с такой страстью, что кажутся выходящими за рамки простого научного любопытства. Гильберт представил версию уравнений в докладе 16 ноября и статье, датированной 20 ноября, то есть раньше Эйнштейна, представившего свои окончательные уравнения 25 ноября. Тем не менее команда учеников Эйнштейна в 1997 году разыскала часть верстки статьи Гильберта, в которую Гильберт внес изменения и затем отправил обратно в издательство 16 декабря. В оригинальной версии уравнения Гильберта отличались в небольшом, но важном пункте от окончательной версии уравнений из лекции Эйнштейна 25 ноября. Они не были на самом деле общековариантными, и ими не предусматривалась свертка тензора Риччи и введение в уравнение его следа – скаляра Риччи. Эйнштейн сделал это в своей лекции от 25 ноября. По-видимому, Гильберт внес исправление в пересмотренный вариант статьи, для того чтобы он соответствовал версии Эйнштейна. Во внесенных исправлениях, когда он описывал гравитационные потенциалы, он великодушно добавил замечание “впервые введены Эйнштейном”.

Перейти на страницу:

Похожие книги

10 гениев науки
10 гениев науки

С одной стороны, мы старались сделать книгу как можно более биографической, не углубляясь в научные дебри. С другой стороны, биографию ученого трудно представить без описания развития его идей. А значит, и без изложения самих идей не обойтись. В одних случаях, где это представлялось удобным, мы старались переплетать биографические сведения с научными, в других — разделять их, тем не менее пытаясь уделить внимание процессам формирования взглядов ученого. Исключение составляют Пифагор и Аристотель. О них, особенно о Пифагоре, сохранилось не так уж много достоверных биографических сведений, поэтому наш рассказ включает анализ источников информации, изложение взглядов различных специалистов. Возможно, из-за этого текст стал несколько суше, но мы пошли на это в угоду достоверности. Тем не менее мы все же надеемся, что книга в целом не только вызовет ваш интерес (он уже есть, если вы начали читать), но и доставит вам удовольствие.

Александр Владимирович Фомин

Биографии и Мемуары / Документальное