В 1917 году вид космоса ограничивался моментальным снимком Млечного Пути. Огромное скопление звезд в пустоте. Однако при использовании снимка в вычислениях на фотографии начиналось движение. Звезды под влиянием гравитационных сил смещались со своих позиций, приближаясь друг к другу. Эйнштейн ввел в уравнение новый параметр – космологическую постоянную, которая характеризует свойства вакуума и объясняет эволюцию некоторых космологических моделей.
Физический смысл этого математического параметра оставался неясным, так как единственная цель ее введения – гарантировать пространственно-однородное статическое решение уравнений. Эйнштейн взял модель плоской Вселенной Ньютона, изогнул ее и вывернул, превратив в гиперсферу (сферу с четырьмя измерениями). Поверхность гиперсферы представляет собой безграничное пространство: наблюдатель может перемещаться в нем в любом направлении, возвращаясь каждый раз в начальную точку и никогда не сталкиваясь с границей. В нашей Вселенной трехмерное пространство замыкается, образуя подобие надутого резинового шара. Космический корабль, придерживаясь одного и того же курса, мог бы облететь всю Вселенную и вернуться в начальную точку. В 1930 году Эддингтон показал, что расширение Вселенной можно объяснить с использованием космологической постоянной. С математической точки зрения Вселенная Эйнштейна находится в таком же шатком равновесии, как и трость на носу у канатного плясуна, и малейшие изменения ее характеристик могут привести к ее расширению или сжатию.
В течение последующих десятилетий, по мере развития наблюдательных приборов астрономы осознали, что Вселенная продолжается далеко за пределами нашей галактики. В 1929 году Хаббл заметил, что чем дальше от нас находится галактика, тем быстрее она отдаляется. Это явление следует понимать не как перемещение галактики в пространстве, но как расширение самого пространства. Вернемся к аналогии с шаром: если мы будем его надувать, точка на его поверхности будет удаляться от соседних точек, хотя сама она при этом не перемещается. И этот эффект весьма схож с тем, что мы наблюдаем на небосклоне: небесные тела движутся благодаря расширению пространства.