У Эйнштейна была и другая причина заняться проблемой световых явлений. Он предчувствовал: разрешив этот вопрос, он сможет сделать свою специальную теорию относительности общей, создать свою теорию гравитации. Чтобы низвергнуть Ньютона, надо доказать способность света подпадать под воздействие гравитации. Посвящение Эйнштейна: пролить свет на исходные истины, сказать правду о свете.
В статье «Об одной эвристической точке зрения на возникновение и превращение света» будет рассмотрена связь между световым явлением и материей.
Эйнштейн сделал постулатом неизменность скорости света — ту самую скорость света, впервые измеренную в 1676 году в Парижской обсерватории. Однако неизменность противоречила его теории относительности. Теория ложна или скорость света способна меняться?
Он сделал выбор в пользу неизменности скорости, даже если это не согласуется с его теорией относительности. Возвел парадокс в ранг аксиомы, исключение сделал правилом. Ничто не должно быть неизменным, абсолютным… за исключением скорости света!
Еще одна революция в умах. Эйнштейн вообразил, как до него сделал Планк, что свет не состоит из частиц. Свет — нечто вроде волны. Это волна, и более чем волна. Он опирался на труды астрономов, которые за годы до него изучали свечение двойных звезд. Это звезды с равными массами, находящиеся в постоянной ротации, и одна ближе к Земле, чем другая. Анализ их светового излучения доказывает, что время, за которое свет ближайшей звезды доходит до Земли, точно такое же, как и у более далекой. Эйнштейн первым пришел к выводу:
Что делать с призрачным эфиром? Если бы эфир существовал, это «материальное тело», согласно законам Ньютона, прилагало бы дополнительные силу и скорость. Благодаря чему эта скорость превысила бы
Со скоростью разобрались, а как там с природой и составом света?
Ньютон считал свет корпускулярным явлением — потоком частиц, движущихся… в эфире, который занимает пространство.
По мнению Герца и Максвелла, свет не имеет корпускулярной составляющей, он обладает волновой природой, связанной с быстрыми колебаниями электрических и магнитных полей. Корпускулярная или волновая? Работы Планка подправили теорию Герца. По Планку, свет состоит из квантов, или фотонов. Однако Планк уперся в отсутствие подтверждения этих расчетов опытным путем. По мнению немецкого ученого, излучение света дискретно, однако Планк не уловил произвольность частоты излучения и, в частности, трудность излучения света высокой частоты. Планк думал, что ошибся.
Чтобы попытаться разрешить противоречие между двумя противоположными и несовместимыми версиями (что же такое свет: волна или частицы?), Эйнштейн применит статистическую механику. Он воспользовался теорией вероятностей, перенеся ее в область излучения. Он начал с происхождения световых пучков. Нагретый металл излучает электроны. Полученная световая энергия переносится «квантами» (позже их станут называть фотонами). Это фотоэлектрический эффект (он известен: его открыл Герц в 1887 году, а Ленард[30] получит за него Нобелевскую премию). Энергия квантов пропорциональна частоте нагревания металлического тела (чем больше раскаляется металл, тем больше энергия, тем ярче свет).
Спектр света зависит от частот светоизлучения. Но почему при определенных частотах не возникает светового луча? Планк отступил перед этим препятствием. Эйнштейн его преодолеет. На его взгляд, здесь не действует сплошной закон — всё или ничего. А значит, не существует «сплошного светового поля». Применяя статистические расчеты, Эйнштейн обнаружил, что световая энергия выделяет не кванты, как думал Планк, а