Читаем Эко сад и огород. Книга для тех, кто хочет сохранить здоровье полностью

Сухой летний период играет важную роль в образовании и накоплении гумуса черноземов по следующей причине: недостаток влаги в почве к концу лета подавляет жизнедеятельность микроорганизмов, разлагающих и минерализующих растительные остатки, но в это время продолжают интенсивно работать ферменты, играющие существенную роль в процессах собственно гумификации.

Личный опыт

В последние годы я все свои земли стал опрыскивать гуматами весной и осенью («Агровит-Кор»), их еще называют катализаторами почвообразования, поэтому за лето у меня гумуса разрушается менее 1,5 % и прибывает к осени выше 2,5 %. Почва становится темнее и структурнее, в сентябре – теплой и мягкой как перина.

В течение вегетационного периода содержание гумуса в типичном черноземе под целинной степью закономерно изменяется, уменьшаясь приблизительно к концу июня и снова повышаясь в сентябре. Гумус обильно снабжает элементами минерального питания интенсивно вегетирующую в это время растительность.

В конце же лета, она как бы отдает почве новое синтезированное органическое вещество взамен старого, израсходованного почвой на минерализацию в период бурного роста вегетативной массы.

В самом верхнем наиболее корнеобитаемом слое чернозема (0–5 см) сезонные изменения содержания гумуса достигают 2 %: содержание гумуса сначала уменьшается с 10–11 до 8–9 %, а к осени более или менее восстанавливается до первоначального уровня. Потеря 1–2 % гумуса – это 25–30 т/га.

Невозможно предположить, что такое количество гумуса за 2–3 месяца может восстановить опад корней. Самих корней в верхнем 20-сантиметровом слое чернозема содержится 18 т/га. Откуда же берется органический материал – источник пополнения гумуса в черноземе к концу вегетационного периода?

Этим источником являются не только опад корней и не только надземная масса степных трав после ее отмирания, но и прижизненные корневые выделения, которые тоже подчинены сезонной ритмике и достаточно обильны в целинно-степных черноземах…»

Я хочу подчеркнуть, что даже в степях, в дикой природе гумус прирастает очень медленно, тысячи лет. А вот падает в периоде вегетации растений летом на 2 %. Посадка сидератов не меняет скорости накопления гумуса. Да, сидераты осенью дадут прибавку 1–2 % гумуса, но ведь за лето они и съедят эти 1–2 %. Без внесения щепы из сладких веточек или другой дополнительной органики нам не обойтись.

Теперь вам стала понятна роль гумуса в эволюции растений? Нет? Поговорим еще.

В свежем опаде находится много разных органических молекул, некоторые из них быстрее перерабатываются почвенными организмами, чем лигнин или целлюлоза. Например, крахмал и аминокислоты – это простые органические молекулы, первыми вступающие в процесс разложения. Очень много почвенных бактерий и грибов имеют ферменты, необходимые для этого процесса. Все видели, как быстро скисает мясной бульон или ягодный сок.

Разложение крахмала и аминокислот обеспечивает большую часть энергетических потребностей микроорганизмов почвы. Поэтому так эффективны подкормки растений настоями, например крапивы или окопника, где много сахаров и белка.

В противоположность этому фенольные соединения, воски и лигнин состоят из более сложных органических молекул, в почве не деградируют в течение очень длительного периода времени. Но бактерии, грибы, черви с клещами перерабатывают органику, если есть влага, воздух, нужный уровень pH и температура. Об этом часто забывают начинающие. Органика, тонким слоем положенная на песок, высохнет, закопанная глубоко – заплесневеет, сгниет. Опилки без азота закислят почву, пищевые отходы и зеленые листья из-за избытка азота загниют.

Процесс разложения органических веществ называется минерализацией. Во время минерализации элементы, которые были частью структуры органических молекул, пройдя серию пищевых цепочек, постепенно окисляются до менее сложных форм, в конечном счете превращаясь в неорганические молекулы, которые и усваиваются корнями.

Цель у микробов чисто утилитарная – забрать из органики энергию углерода, NPK и микроэлементы и построить свои тела, прежде всего нуклеиновые кислоты, белки и клеточные стенки. Главный дефицит для них – это углерод с его энергией, второй лимитирующий фактор – азот, хотя в почве, богатой биотой, при достатке энергии сахаров дефицита азота нет, аммоний синтезируется из воздуха.

Перейти на страницу:

Похожие книги

ДНК. История генетической революции
ДНК. История генетической революции

Познакомьтесь с историей генетической революции, рассказанной Джеймсом Д. Уотсоном, лауреатом Нобелевской премии. Гениальный ученый отправляет нас в величайшее научное путешествие, охватывающее все вехи генетической революции – от открытия двойной спирали до открытий последнего десятилетия. Открытие человечеством двойной спирали ДНК по значимости можно сравнить только со свершениями эпохи Просвещения. Естественный отбор все еще действует, но генная терапия уже стала реальностью. Что ждет нас дальше? Практически не осталось областей науки и деятельности, которые в той или иной степени не были бы связаны с генетикой: редактирование генов, эпигенетика, агрохимия, геномика и исследования рака – только вершина айсберга. «Когда я попытался проанализировать причины своего успеха, то понял, что это – знания. Для прорывов нужны идеи, но их базис, фундамент – именно знания. А для того, чтобы получить знания, нужно читать как можно больше». Дж. Д. Уотсон, лауреат Нобелевской премии

Джеймс Дьюи Уотсон , Кевин Дэвис , Эндрю Берри

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Образование и наука