Читаем Эко сад и огород. Книга для тех, кто хочет сохранить здоровье полностью

На заметку

Для чего я акцентирую внимание на этой группе бактерий? Чтобы садовод понял, что в почве в зоне корней происходят сложнейшие процессы, когда вокруг древнейших микроорганизмов, способных аккумулировать энергию солнца, концентрируются стабильные группы из других организмов, и все это способствует длительному взаимному процветанию как растений, так и почвенных организмов. Нельзя на почву смотреть примитивно, как на «желудок коровы, где происходит пищеварение».

Один из видов таких бактерий – пурпурные бактерии; они были обнаружены при изучении бескислородного фотосинтеза. Почти все они анаэробы, живут без кислорода. Так, в экспериментах сначала выявили реакцию бактерий на разные концентрации кислорода. Оказалось, что даже при следовом содержании его в среде бактерии перемещались в бескислородную зону чашек Петри. Затем на одну сторону чашки фокусировали свет, оставляя другую темной, – бактерии стремились переместиться в световую зону. Основатели ЭМ-технологий говорят об их роли следующее:

«Почвенные фотосинтезирующие бактерии синтезируют полезные для себя вещества, используя органические вещества из корневых выделений, но главное, используя энергию солнечных лучей и тепла, выделяемого почвой. Полезные вещества, выделяемые ими, состоят из аминокислот, нуклеокислот, биоактивных субстанций и сахара, и все это способствует росту и развитию растений. Эти бактерии концентрируются непосредственно в ризосфере растений и являются ключом для повышения количества бактерий в целом. Увеличение количества фотосинтезирующих бактерий в почве способствует увеличению количества других эффективных микроорганизмов.

С другой стороны, они сами используют питательные вещества, производимые другими микроорганизмами в процессе жизнедеятельности. Этот феномен называется «сосуществование и сопроцветание».

Приведу выдержку на эту тему из последних номеров научных журналов по генетике.

«Некоторые бактерии, несмотря на их огромную распространенность в естественной среде, до сих пор не удается культивировать в лабораторных условиях. Так, например, обстоят дела с родом Prochlorococcus, которых называют самыми многочисленными фотосинтезирующими организмами на Земле. Они выполняют большую часть работы по насыщению атмосферы кислородом, океан кишмя кишит этими бактериями, но на протяжении десятилетий попытки вырастить их в искусственных условиях заканчивались неудачей.

Ученые объясняют это тем, что в природе бактерии взаимосвязаны намного сильнее, чем мы можем представить. Разные виды микроорганизмов буквально не могут обойтись друг без друга.

Происходит это потому, что бактерии избавляются от некоторых генов, если понимают, что другой вид в сообществе способен выполнять ту же функцию. Например, бактерия может не выдерживать даже малых количеств перекиси водорода в среде, но при этом у нее нет никаких генов, чтобы ликвидировать токсичное вещество. Это значит, что микроб целиком полагается на своего соседа, который обезвредит яд вместо него. (По сути, микробные ассоциации – на самом деле реальные надорганизмы.)

Всякая способность, всякая адаптация чего-то стоит: чтобы синтезировать нужный фермент, необходимо потратить ощутимое количество энергии и ресурсов. Ресурсы же конечны, невозможно с одинаковым успехом отбиваться от всех «сюрпризов» среды обитания.

Поэтому бактерии «не упускают случая» отказаться от лишнего белка, раз уж он все равно есть у других. Эксперименты показали, что дублирующий ген не приживается, если в сообществе уже есть кто-то, выполняющий похожую работу. В итоге может случиться, что все сообщество окажется в зависимости от одного вида, который обезвреживает токсины.

Ученые, опубликовавшие статью в журнале mBio, подчеркивают, что это вовсе не предполагает кооперации и даже межвидового взаимодействия, ни о каком симбиозе и речи нет. Бактерии скорее соревнуются, кто быстрее переложит на другого часть своих функций. С другой стороны, тот, кто оказался крайним, становится необычайно важен для сообщества. Такой вид может быть не слишком многочислен, но без него все остальные не выживут. Впрочем, такая эволюционная игра довольно опасна: в ней могут проиграть все, если одновременно «скинут» из своего генома один и тот же ген…»

Вывод, который я для себя сделал, прост – человек, как венец природы, да и его культурные растения очень уязвимы, они «скинули» из своего генома миллионы важных генов, переложив их работу на «крайних». Поэтому наша задача – заботиться о биоразнообразии почв, и особенно о тех «крайних», в которых сохранились миллионы нужных нам генов.

Перейти на страницу:

Похожие книги

ДНК. История генетической революции
ДНК. История генетической революции

Познакомьтесь с историей генетической революции, рассказанной Джеймсом Д. Уотсоном, лауреатом Нобелевской премии. Гениальный ученый отправляет нас в величайшее научное путешествие, охватывающее все вехи генетической революции – от открытия двойной спирали до открытий последнего десятилетия. Открытие человечеством двойной спирали ДНК по значимости можно сравнить только со свершениями эпохи Просвещения. Естественный отбор все еще действует, но генная терапия уже стала реальностью. Что ждет нас дальше? Практически не осталось областей науки и деятельности, которые в той или иной степени не были бы связаны с генетикой: редактирование генов, эпигенетика, агрохимия, геномика и исследования рака – только вершина айсберга. «Когда я попытался проанализировать причины своего успеха, то понял, что это – знания. Для прорывов нужны идеи, но их базис, фундамент – именно знания. А для того, чтобы получить знания, нужно читать как можно больше». Дж. Д. Уотсон, лауреат Нобелевской премии

Джеймс Дьюи Уотсон , Кевин Дэвис , Эндрю Берри

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Образование и наука