Читаем Экология человека полностью

Малая растворимость гелия в тканях и высокий коэффициент его диффузии лежат в основе того, как указывают А. Г. Дианов и др., что при дыхании кислородом время практически полной десатурации организма от Не значительно меньше, чем от N2. Это уже существенное и бесспорное преимущество использования Не в ИГА. В случаях повышения температуры в кабине благодаря высокой теплопроводности Не космонавты гораздо лучше будут переносить это воздействие в ИГА, в которой N2 заменен Не.

В такой среде должна также повыситься устойчивость к гиперкапнии, интенсивным физическим нагрузкам и другим воздействиям, приводящим к значительному росту вентиляции. Этот эффект обусловлен тем, что при форсированном дыхании гелиокислородной смесью сопротивление воздухоносных путей в связи с низкой плотностью Не сказывается меньше, чем при дыхании воздухом. При нормальном, спокойном дыхании этот эффект практически не проявляется, так как сопротивление воздухоносных путей определяется уже не плотностью, а в основном вязкостью вдыхаемого газа. Вязкость Не существенно не отличается от N2.

Одним из доводов, обосновывающих целесообразность замены азота в ИГА гелием, является высокая устойчивость атома Не к действию различных видов радиации. Это выгодно отличает Не от N2. Относительно большой вес N2 определяет его слабые защитные свойства по отношению к космическому излучению как с точки зрения поглощения первичных нуклонов, так и в отношении образования вторичных частиц. Согласно данным М. Г. Дмитриева, под действием ионизирующего излучения в воздухе образуются «возбужденные» атомы и ионы азота. Они вступают в химические реакции с О2, в результате чего образуются такие токсические соединения, как окись, закись и двуокись азота. Помимо перечисленных соображений, целесообразность замены азота в ИГА гелием обусловлена и с технической точки зрения. Плотность Не приблизительно в 7 раз меньше плотности N2, в связи с чем использование гелиокислородной атмосферы в космических кораблях приводит к снижению стартового веса, а также веса запасов газа, необходимых для восполнения атмосферы корабля. Данное преимущество гелиокислородной ИГА не всегда может в полной мере проявляться в связи с высокой текучестью Не. Это является причиной сокращения резервного времени при утечке газов из кабины в случаях замены азота в ИГА гелием, что, несомненно, следует считать отрицательной стороной такой замены. К сказанному следует добавить, что замена азота в ИГА гелием должна также привести к снижению энергии, необходимой для вентиляции кабины. Несмотря на определенные выгоды использования Не в ИГА, экспериментальных исследований с участием человека, в которых бы изучался этот вопрос, сравнительно немного. В работах отечественных исследователей была экспериментально изучена ИГА, состоящая из О2 и Не при нормальном барометрическом давлении (1 атм).

Результаты работ этих авторов показали, что пребывание в гелиокислородной среде не вызывает у испытуемых сколько-нибудь существенных изменений самочувствия, поведения и работоспособности. Однако замена азота в ИГА гелием все же сопровождалась некоторыми функциональными сдвигами. Наиболее важными из них были изменения теплообмена, речи и дыхания. Так, пребывание в гелиокислородной ИГА при температурах, являющихся комфортными в условиях обычной воздушной атмосферы (18–24 °C), сопровождалось заметным охлаждением испытуемых. Например, при температуре 21 °C у испытуемых быстро появлялись неприятные теплоощущения. При этом средневзвешенная температура кожи за 2 ч снижалась почти на 2 °C. В гелиокислородной ИГА зона теплового комфорта оказалась заметно сдвинутой в сторону более высоких температур и находилась в дневное время в пределах 24,5-27,5 °C, а ночью в пределах 26–29 °C. При оценке этих данных обращает на себя внимание значительное сужение (на 3 °C) зоны теплового комфорта в гелиокислородной среде по сравнению с аналогичной зоной в воздухе. Как уже отмечалось, этот эффект гелиокислородной атмосферы связан с высокой теплопроводностью Не.

Замена азота воздуха гелием привела и к изменению речи испытуемых: в гелиокислородной ИГА спектр речи сдвигался в сторону высоких частот на величину порядка 0,7 октавы. Разборчивость речи при этом несколько ухудшалась, но еще сохранялась на уровне допустимых величин (90–95 %). Сразу после перехода на дыхание обычным воздухом речевая функция восстанавливалась. Согласно расчетным данным, скорость распространения звука в гелиокислородной среде при давлении в 1 атм и температуре 27 °C в 1,85 раза выше, чем в воздухе. Это и является причиной искажения речи после замены азота воздуха гелием.

Функциональные изменения дыхания в гелиокислородной среде проявлялись в увеличении максимально возможной вентиляции легких, что было обусловлено снижением сопротивления воздухоносных путей. Таким образом, результаты исследований, в которых азот воздуха замещался гелием, показали практическую возможность использования такой ИГА (В. Б.Малкин, 1975).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже