Читаем Эксперимент, Теория, Практика. Статьи, Выступления полностью

В самом деле, как себе представить механизм теплопроводности? Мы считаем, что тепло есть движение атомов в веществе. Когда одна часть тела более нагрета, чем другая, атомы в ней приобретают более энергичное колебательное движение, чем в другой. Благодаря силам взаимодействия более энергичное движение атомов нагретой части тела передается менее нагретой. Неравномерность в энергии колебаний как бы стремится выравняться по всему телу, и это влечет за собой то, что тепло распространяется по всему телу. Значит, теплопроводность надо рассматривать как способность атомов передавать свои колебания друг другу, и чем больше это свойство передачи, тем больше значение для теплопроводности данного вещества.

Теперь попытаемся представить себе механизм, обусловливающий вязкость. При течении, например, в трубочке, слой жидкости, прилегающий к стенке, неподвижен, следующий слой уже движется с некоторой скоростью, над ним движется другой слой с несколько большей скоростью и т. д. Между этими слоями существует скольжение, которое происходит с трением. Это трение вызывается тем, что атомы одного слоя в своем движении отстают от атомов следующего слоя и благодаря тем же силам взаимодействия мешают движению. В результате получается потеря энергии, которая и обусловливает вязкость жидкости. Из такой картины следует, что вязкость должна быть тем больше, чем больше движение атомов одного слоя влияет на движение атомов другого слоя, т. е. чем легче в теле распространяется тепло.

Поэтому при увеличении в веществе его теплопроводности естественно ждать также и увеличения его вязкости, а не наоборот, как это происходит в гелии. Спрашивается, почему же при таком колоссальном увеличении теплопроводности гелия-II вязкость его уменьшается?

Чтобы разрешить это противоречие, мы выдвинули предположение, что большая теплопроводность, которую наблюдал Кеезом, является только кажущейся. В самом деле, известно, что существуют два механизма теплопередачи. Один — это теплопередача от атома к атому, как мы описывали и какая наблюдается в твердом теле, а другой же механизм теплопередачи — это конвекция. Положим, вы будете держать руку над горячим источником, например радиатором, — вы сразу почувствуете тепло, так как поток нагретого воздуха будет переносить тепло к вашей руке. Такой перенос тепла вместе с движущимся потоком вещества и называется конвекцией. Если же руку поместить под радиатором, то никакого тепла не почувствуется, так как поток теплого воздуха идет кверху, а обычная теплопередача воздуха очень мала. В такой плохо-теплопроводной среде, как воздух, обычная теплопередача только и происходит благодаря конвекционному переносу. Так и у гелия с его большой текучестью естественно предположить, что будет легко происходить конвекционная теплопередача, и таким механизмом переноса тепла и могла бы объясняться большая теплопроводность, которую наблюдал Кеезом.

Подсчеты сразу же показали, что для того, чтобы объяснить большую теплопередачу конвекционными потоками, вязкость гелия-II должна быть значительно меньше той, которая была измерена учеными в Канаде.

Но тут надо отметить, что малая вязкость — величина, довольно трудно поддающаяся измерению. Теория показывает, что истинное значение вязкости может быть как бы затушевано присутствием в жидкости так называемого турбулентного движения, т. е. вместо того, чтобы иметь при измерениях спокойное течение, на самом деле на него накладываются движения от вихрей, которые, как можно показать, исказят результаты измерений, так что полученная величина может оказаться во много раз больше истинной.

Вопрос этот чисто экспериментальный, я не буду его подробно касаться, так как он требует довольно детального описания техники измерений [ 3 ]. Скажу только, что мы под этим углом зрения снова произвели измерения вязкости гелия. Нам удалось построить вискозиметр (прибор для измерения вязкости), который имел очень узкую щель, всего в полмикрона (тысячная доля миллиметра), через которую протекал гелий. Поставив опыт таким образом, можно было в значительной мере избежать вредного влияния вихрей, и тогда удалось показать, что наблюдаемая вязкость гелия-II была по крайней мере в тысячу раз меньше, чем ее определяли прежде.

Можно было также показать, что то значение для вязкости, которое мы получили, является только возможным верхним пределом: на самом деле истинное значение вязкости могло быть сколь угодно меньше, т. е. даже в нашей узкой щели мы не могли доказать, что полностью удалось исключить вредное влияние турбулентного движения. Эта работа была нами опубликована 3 года тому назад, и она вызвала целый ряд обсуждений и критику.

Первым делом начали искать возможные ошибки в методике этой работы. И тут поучительно рассказать об одном возражении, выдвинутом против нас.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука
Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука