Читаем Эксперимент, Теория, Практика. Статьи, Выступления полностью

Но здесь следует учесть и другой факт, который вас, как экономистов, может заинтересовать. Оказывается, что при интенсификации производства не все решается одной стоимостью продукции, но следует учитывать и трудозатраты.

Приведу вам такой упрощенный пример. Предположим, нам нужно выработать 1 тонну какого-то продукта. Чтобы его произвести, двум рабочим платят по 300 рублей каждому. Таким образом, тонна продукта обходится вам в 600 рублей. Но вот мы механизировали и интенсифицировали процесс производства. Теперь, чтобы произвести то же количество продукта, нужно участие уже не двух, а одного рабочего, но более квалифицированного, чем прежние. Он затратит на это столько же времени, сколько каждый из прежних двух рабочих. Но ему придется платить уже 700 рублей, т. е. больше, чем прежним двум вместе взятым, и поэтому продукт будет стоить на 100 рублей дороже, хотя человеко-часов затрачено в два раза меньше. Спрашивается: выгодно это или нет?

В масштабе всей страны это выгодно. Рабочему, который освободится от участия в этом процессе, это даст возможность начать учиться. Образование человека стоит меньше по сравнению с тем, что приносит государству его более квалифицированный труд. Затраты на образование составляют незначительную часть стоимости продукта, получаемого от труда человека. Поэтому судить о выгодности или невыгодности интенсификации производственного процесса нужно не только по рублям, но также по трудочасам, учитывая рост производительности труда и экономию в рабочей силе.

Кроме того, очевидно, что если рабочий с менее квалифицированной работы переходит на более квалифицированную работу, то в стране поднимается уровень квалификации трудящихся и повышается их жизненный уровень. Поэтому сейчас, когда производят предварительные расчеты рентабельности интенсификации кислородом различных производств, даже в том случае, когда это оказывается убыточным в копейках, но, подымая производительность труда, дает выигрыш в затрате рабочей силы, освобождая из производства наименее квалифицированную часть рабочих, ее в общем следует оценить положительно. Как подсчитал Бардин, в металлургии применение кислорода обещает дать 40% экономии

в рабочей силе.

Я привел пример с черной металлургией, потому что он у нас

наиболее хорошо изучен и в этой области уже имеются надежные экспериментальные данные, на которых основано все, только что мною сказанное. Расчеты показывают, что с этой точки зрения применение кислорода и в ряде других областей народного хозяйства оказывается весьма эффективным.

Я мог бы вам рассказать также о применении кислорода в азотно-туковой промышленности, при получении целлюлозы, для извлечения золота из руд, для изготовления дешевых взрывчатых веществ, так называемых оксиликвитов и т. д. Подробно об этих вопросах можно почитать в «Бюллетене» Главкислорода. Но и этого перечня достаточно, чтобы оценить масштабы тех производств в промышленности, которые возможны с интенсификацией кислородом технологических процессов.

В последние годы как инженер и физик, я со своими сотрудниками в Институте физических проблем занимался задачей разработки более совершенных методов получения кислорода. Я вам уже говорил, что в существующих установках для получения кислорода затрачивается во много раз больше энергии, чем это предельно возможно. Поэтому перед учеными стоит вопрос: как усовершенствовать процесс извлечения кислорода из воздуха так, чтобы затрачивая меньше мощности, удешевить кислород?

Но это еще не вся проблема. Нам нужно получать не только дешевый кислород, но надо получать еще очень много кислорода. В данном случае это не так просто — оказывается, здесь количество переходит в качество. Первая же большая домна, переведенная на кислород, будет потреблять столько кислорода, сколько вся наша автогенная промышленность во всем Союзе.

Если мы станем осуществлять необходимое для этих масштабов производство кислорода существующими методами, то возникает принципиальное затруднение. В технике, когда растут мощности, есть одна особенность, которую инженеры больше чувствуют, чем осознают, хотя ее можно достаточно строго обосновать теоретически.

Поясню ее на примере: если увеличивать размеры какой-либо поршневой машины, например, двигателя, рассчитывая получить от нее большую мощность, то окажется, что после определенного размера вес ее на единицу мощности будет не уменьшаться, а увеличиваться. Так, если паровая машина мощностью в 100 лошадиных сил (я беру совершенно условные цифры для характеристики относительных пропорций) весит 1 тонну, то машина мощностью в десять раз большей — в 1000 лошадиных сил, — будет весить не десять тонн, а больше. С увеличением габаритов поршневой машины после некоторого размера мощность ее на единицу веса убывает. Поэтому на практике, если мы хотим построить более мощную поршневую машину, оказывается выгодным не увеличивать размеры цилиндров, а увеличивать их число.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука
Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука