Читаем Эксперимент, Теория, Практика. Статьи, Выступления полностью

Применение эмпиризма в этих исследованиях обычно связано с трудоемким накоплением больших количеств опытных данных и с большой сложностью их систематизации и использования. Разберем как пример такого рода эмпирических исследований, которые часто производятся теперь, проблему создания вещества с определенными механическими свойствами — прочностью, жароустойчивостью, пластичностью и пр. Хорошо известно, что в области достижений предельных показателей в авиации, космонавтике, турбостроении прочность и жаропрочность материалов являются обычно главным ограничивающим фактором. Достаточно было бы поднять жаропрочность сплава на несколько сот градусов и предельную прочность — на 20—30%, и это дало бы возможность решить ряд новых технических задач. Однако несмотря на то, что все механические свойства металлов сейчас хорошо и быстро измеряются, количественной теории, связывающей эти свойства вещества с его химическим составом и физической структурой, пока нет, хотя природа сил между атомами хорошо известна. Математическая задача столь сложна, что даже не может быть сформулирована. Поэтому основной путь искания здесь — эмпиризм. Но нетрудно показать, что даже эмпиризм не может полностью решить эту задачу. Нам известно около 100 элементов, которые образуют сплавы. Положим, что описание новых свойств одного металла или сплава, его прочность, жаропрочность, упругость, электропроводность и т. д., занимает одну страницу. Для описания свойств самих элементов потребуется 100 страниц, для описания бинарных сплавов потребуется уже 10 тысяч страниц. Сплавы тройных систем уже займут миллион страниц. Легко видеть, что исследовать и систематически описать тройные сплавы является предельной возможностью. Таким образом, эмпирический метод изучения имеет свои естественные пределы. Изобретение кибернетических машин табуляторного типа, конечно, и тут тоже расширит наши возможности, но все же нужно признать, что проблема научного создания новых сплавов с заданными свойствами более чем из трех компонентов не разрешена. Но известно, что на практике уже используются сплавы из четырех компонентов или даже больше и такими сплавами уже были решены важные задачи.

Будет ли это всегда так? Я не думаю. Такие многокомпонентные сплавы, может быть, были найдены случайно, но вероятнее — интуитивным «нюхом» талантливого ученого, который, как искусный повар, умеет готовить вкуснее других. Если есть интуиция, значит, есть и закономерность. Задача науки — выявить эти закономерности, но метод решения таких сложных проблем до сих пор не найден, и это, несомненно, одна из проблем будущего.

Существует еще одна, менее известная проблема, которая в ближайшем будущем представит большой интерес, — она пока что тоже решается эмпирически. Это — создание сверхпроводящего сплава с критической температурой, близкой к комнатной, и с достаточно высоким критическим магнитным полем, то есть полем, которое разрешает эту сверхпроводимость. Как известно, в сверхпроводниках электрический ток течет без потерь, поэтому уже сейчас сверхпроводимостью начинают широко пользоваться для создания высокодобротных радиоколебательных систем, для катушек, создающих сильное магнитное поле, для конструирования малогабаритных запоминающих устройств в электронных счетно-решающих машинах.

Но главное затруднение практического использования сверхпроводимости в том, что все эти устройства работают при очень низкой температуре, температуре жидкого гелия (4,2° К). Поэтому наибольшее практическое значение имело бы открытие материала, обладающего сверхпроводимостью при комнатной температуре. Это вызвало бы революцию в современной электротехнике, так как позволило бы вести передачу электроэнергии без потерь. Но пока что теория указывает, что сверхпроводимость в чистом металле не может существовать при температуре выше температуры Дебая, и, следовательно, в настоящее время открытие такого материала можно ждать только в сплавах, теория свойств сверхпроводимости которых полностью еще не понята. Тут тоже встает проблема эмпирического изучения многокомпонентного соединения, о котором я уже говорил.

Одна из крупнейших задач, стоящих перед физикой твердого тела, — это создание полимеров с заданными свойствами. Полимеры в живой природе всегда являются основным «строительным материалом», который выполняет всевозможные функции. Наш век не только будет веком использования атомной энергии, но и веком, когда человечество научится приготовлять полимеры, а также широко использовать их в жизни как основной «строительный материал».

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука