Читаем Эксперт № 46 (2013) полностью

Все, с кем мы обсуждали результаты работы по этому гранту, отмечали, что подобные исследования экспериментальных опухолей ведутся во многих лабораториях, например в Российском онкологическом научном центре им. Н. Н. Блохина, но такого сочетания разработок, как в этой лаборатории (генетическое маркирование, создание культур флуоресцентных белков и генетически кодируемых фотосенсибилизаторов), в России до сих пор не было.

Матрикс мозга

Грант, посвященный биологии мозга и реализуемый на базе ННГУ в тесной кооперации с ИПФ и Медицинской академией, был получен профессором Итальянского института технологий (Генуя, Италия) Александром Дитятевым . Профессор Дитятев — известный ученый в области науки о мозге, создатель нового направления в нейронауке по изучению синаптических функций внеклеточного матрикса в головном мозге млекопитающих. Научной задачей, стоявшей перед получателями гранта, было изучение влияния различных молекул внеклеточного матрикса мозга на информационные функции передачи сигналов в мозге.

Матрикс — это внеклеточная среда, которая заполняет в мозге пространство между нейронами и различными вспомогательными клетками и, согласно последним исследованиям, активно взаимодействует с клетками мозга. Нейронные сети взаимодействуют с этой средой, образуя различные обратные связи, влияющие на пластичность мозга.

В рамках гранта, в частности, удалось показать, что такие болезни, как эпилепсия и шизофрения, связаны в том числе с нарушением структуры матрикса мозга. Кроме того, коллектив, работавший по гранту, подготовил несколько работ, основанных на применении радиофизических методов для описания сигнальных процессов в мозге. Как заметил заведующий кафедрой нейродинамики и нейробиологии Нижегородского университета, заведующий лабораторией нелинейных процессов в живых системах ИПФ, соруководитель гранта от ННГУ Виктор Казанцев , «использование таких методов — это то, чем славна нижегородская физическая школа со времен одного из ее основателей академика Александра Андронова и чем активно занимаются в ИПФ».

Продолжение гранта позволит заняться разработкой дополненной, модифицированной модели матрикса, которая сейчас включает в себя не только сам матрикс, но и глиальные клетки. Это особый тип клеток, через которые питаются нейроны. Они также вовлечены в процессы активной передачи сигналов в мозге и генерируют кальциевые волны, которые с помощью радиофизических методов изучались в рамках гранта.

Все эти исследования напрямую связаны с выходом на доклинические испытания лекарственных препаратов, воздействующих на мозг, при работе с животными, включая генномодифицированных. Эта работа ведется в том числе в интересах фармкомпаний, которые в других странах обеспечивают существенную часть внебюджетного финансирования подобного рода разработок. Насколько это возможно осуществить в российских условиях, судить сейчас трудно, признает Виктор Казанцев, потому что помимо уже имеющейся научной составляющей необходима еще и соответствующая бизнес-инфраструктура, которая пока не готова. «Но если мы будем предлагать некие решения для бизнеса, то, я думаю, мы достаточно быстро сможем найти и заказы, и финансовую поддержку», — полагает ученый.

Но пока и в ННГУ, и в ИПФ рассчитывают на государственную поддержку исследований мозга в рамках программ развития фармацевтической промышленности и робототехники. В частности, по использованию нейроуправляемых систем в робототехнике.

Заглянуть внутрь Вселенной и скважины

Грант, полученный профессором Стокгольмского (Чалмерского) технологического университета Леонидом Кузьминым для организации лаборатории в Нижегородском техническом университете, предусматривал разработку приемников терагерцевого излучения, необходимых для решения важнейшей задачи фундаментальной физики — выяснения природы сил, вызывающих ускорение расширения Вселенной. Этот феномен объясняется наличием во Вселенной темной энергии и темной материи. Для понимания природы этих явлений требуется детальное знание картины реликтового излучения на субмиллиметровых волнах. Профессором Кузьминым был предложен и успешно реализован болометр (прибор для регистрации фонового космического излучения) на холодных электронах, который представляется самым вероятным кандидатом на то, чтобы стать датчиком нового поколения, способным детектировать реликтовое излучение.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже