— Я ещё не закончил, знание три: аннигиляционный реактор. Известно, что пучки протонов аннигилируют при столкновении на скорости порядка 90 тысяч километров в секунду. Я говорил, что энергия аннигиляции на самом деле значительно выше чем эм це квадрат. Вывод, строим коллайдер, по возможности компактный, способный разгонять пучки протонов до 90 тысяч километров в секунду. То есть два контура коллайдера по 45 тысяч километров в секунду каждый. Пучки сталкиваются и выделяют много энергии. Часть этой энергии снова идёт на разгон пучков протонов, а часть скажем на двигатель звездолёта. Аннигиляционный реактор, это технология гораздо более продвинутая, чем корабли на антивеществе, поскольку в случае поломки нет риска того, что весь корабль взорвётся, эта технология безопаснее. Кроме того, хранить обычное вещество, используемое в качестве топлива такого корабля гораздо проще, чем антивещество. Но аннигиляционный реактор можно использовать не только для создания звездолётов, но также и для того, чтобы решить энергетические проблемы человечества. Займись этим. Забей на проект большого трудновыполнимого проекта ИТЕР термоядерного реактора, и построй реактор аннигиляционный, он и проще и мощнее. И как раз для такого реактора пригодятся материалы с тугоплавкостью более нескольких сотен тысяч кельвин. И даже скажу более, без таких материалов, аннигиляционный реактор практически невозможно построить.
— Если будет работать, то это впечатляет.
— Но я и сейчас не закончил, знание четыре: Как превратить кучу тепла в электричество с КПД 100 %. Ведь аннигиляционный реактор производит не электричество, а тепло, а нам для электроракетного двигателя звездолёта необходимо электричество. И накопление избыточного тепла, при не 100 % КПД может стать большой проблемой для ограниченного размера космического корабля. Итак. Чтобы превратить гору тепла в электричество с КПД 100 %, нужно две турбины, одна будет иметь в качестве рабочего тела литий, вторая будет иметь рабочее тело воду. Начинаем цикл, нагреваем литий до температуры свыше 1500 кельвин, он испаряется и приводит в движение первую турбину, отработанный литий газообразный, в основном и имеет температуру свыше 1500 кельвин, а нам, чтобы переместить его в начало цикла нужен литий не газообразный, а жидкий, с температурой менее 1500 кельвин. Чтобы остудить его, используем воду второй турбины. Вода испаряется, охлаждает литий до жидкого сотояния, и приводит в движение турбину номер два. В итоге мы получаем пар, и его надо как-то остудить, чтобы переместить в начало цикла второй турбины, как это сделать? Ответ: тепловой насос. С помощью теплового насоса мы остужаем воду до жидкого состояния, после чего вода снова под большим давлением подаётся в камеру нагрева второй турбины, там она нагревается сначала тепловым насосом, а потом от газообразного лития первой турбины. Таким образом, всё произведённой нами тепло будет использовано для создания тока, и КПД такой установки будет равным сто процентов.
Чтобы было понятнее я используя нейронный интерефейс начертил на экране перед собой общую схему такого устройства.
— Это сложно.
— Да. Но это выполнимо, и такая установка может производить огромное количество электроэнергии, при этом она будет сравнительно не большой. Но я ещё не закончил, последнее знание на сегодня номер пять: Ядерные изомеры. Сейчас мы используем для роботов атомные батарейки, они не безопасны, сложны в производстве и обладают весьма ограниченной мощностью, из-за чего их нельзя использовать в самолётах и вертолётах, а роботы и тяжёлая техника работающие на ядерных батарейках слишком медлительны. Альтернатива ядерные изомеры. Если взять какое-нибудь тяжёлое ядро, например Тория, и начать облучать его энергией, например с помощью лазера, то можно изменить его строение. Количество нуклонов не изменится, но изменится структура. Обычно, все ядра всех атомов находятся на низшей энергетической стадии, но можно перевести их на более высокую стадию, подводя энергию, зарядить их. А потом, возбудив, всё тем же лазерным лучом, можно получить эту энергию назад. Причём регулируя скорость отдачи энергии. И ядерный изомер может отдавать весьма и весьма много и быстро энергии. Достаточно для полёта космического корабля, самолёта, или для очень активной деятельности робота. Но такие изомерные батареи придётся заряжать, прежде чем использовать, но они очень энергоёмки. Используй это для создания космических кораблей с электроракетными двигателями и более мощной военной и строительной техники.
— Ядерные изомеры экологичны?
— Конечно. Только я думаю их максимальная ёмкость не превысит одной десятой от эм це квадрат, поэтому звездолёт с помощью ядерных изомеров не создашь, но можно создать вполне приличные корабли для полётов внутри солнечной системы.
— Я учту это, и прямо сейчас передам для разработки в ведущие лаборатории.