По словам Эндрю Мура, ушедшего с поста вице-президента компании «Гугл», чтобы вести знаменитую компьютерную школу в Университете Карнеги – Меллона, даже самые сложные современные компьютеры – всего лишь «эквивалент очень умных калькуляторов, справляющихся с конкретными задачами»[42]. Компьютер, например, способен решать мудреные уравнения физики и вычислять, что произойдет, когда сталкиваются черные дыры, но сперва человек должен «поставить» задачу – вывести уравнения для этого конкретного процесса из более общей теории, а ни один компьютер самостоятельно создавать теории не умеет.
Другой пример – мечта леди Лавлейс: сочинение музыки. У нас имеются компьютеры, сочиняющие сложные музыкальные произведения, и для слуха они совсем не оскорбительны. Существуют классические сочинения в стиле Моцарта и Стравинского, джаз, похожий на то, что мог бы придумать Чарли Паркер[43]. Есть даже приложение под названием «Блум», его можно добыть на «Айтюнз» – оно способно генерировать по запросу новую ни на что не похожую инструментальную закольцованную композицию в стиле Брайана Ино[44]. Сам Ино говаривал, что с изобретением технологии такого вот «производства музыки» однажды наши внуки, вероятно, переспросят изумленно: «Вы что, правда слушали совершенно ту же самую вещь по многу раз?»[45]
Заманчива она, такая компьютерная музыка, и у нее есть своя ниша, однако следует отличать ее от новых музыкальных творений. Компьютеры-композиторы используют созданные человеком подборки «сигнатур» – мелодических, гармонических и декоративных мотивов, сочиненных композиторами-людьми – и применяют единые правила чередования и соединения этих мотивов. Это всего лишь перекомпоновка старых тропов, без всяких новых замыслов. Если кто-нибудь берется сочинять музыку в подражание Моцарту или Брайану Ино или же писать картины «под Рембрандта», мы такими творениями не восхищаемся – они считаются у нас вторичными и неоригинальными.
Загвоздка с выработкой у компьютеров эластичного мышления состоит в том, что, хотя компьютеры считают все быстрее и быстрее, к более эластичной обработке данных это пока не приводит. А потому за десятилетия с тех головокружительных первых дней задачки, подчиняющиеся внятно расписанным и легко кодируемым правилам или распорядкам, замечательно поддаются автоматизации, а вот те, что требуют эластичного мышления, – в общем, нет.
Взгляните вот на этот абзац:
Существует множество компьютерных программ, умеющих читать напечатанный текст вслух, но на таких сильных отклонениях от стандартного написания они захлебываются. Мы же, люди, можем прочесть такое почти без запинки.
Неожиданная легкость, с какой мы прочитываем приведенный абзац, – признак эластичности нашего мышления. Ум замечает без всякой подсказки: что-то не так. А затем соображает, что́ тут происходит, сосредоточивается на правильно расставленных первых и последних буквах каждого слова, а затем тасует буквы в середине слов. С учетом общего контекста ум расшифровывает значение написанного, лишь немного теряя в скорости. Компьютер, читающий тексты, попытается сопоставить каждый набор букв со словом в словаре и, вероятно, учтет кое-какие распространенные опечатки и грамматические ошибки, но в конце концов это все ни к чему не приведет – если заранее не снабдить его программой, написанной для решения этой конкретной задачи.
Требующие эластичного мышления задачи могут быть для современного компьютера непосильными, даже если для человека они обыденны[47]. Возьмем распознание закономерностей. Экономист из Массачусетского технологического института Дэвид Отор рассуждает о трудности визуального распознания стула. Эту задачку решит любой школьник, но как запрограммировать компьютер, чтобы и у него получилось? Можно попробовать определить ключевые характеристики – горизонтальная поверхность, спинка, ножки. К сожалению, этот набор черт присущ многим предметам, которые не стулья, – например, кухонная плита с ножками или встроенная мойка с фартуком. Вместе с тем существуют стулья без ножек, и они под это определение не подпадут.