Читаем Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) полностью

Вслед за этим история повторилась еще раз. Создание общей теории относительности, разрешив одно противоречие, породило другое. Начиная с 1900 г., в течение трех десятилетий физики развивали квантовую механику (обсуждаемую в главе 4) для решения нескольких кричащих проблем, возникших при попытке применить понятия XIX в. к микромиру. Как было сказано выше, третье и наиболее глубокое противоречие возникло из несовместимости квантовой механики и общей теории относительности. В главе 5 будет показано, что гладкая искривленность пространства в общей теории относительности находится в противоречии с вытекающим из квантовой механики неистовым, вихревым поведением Вселенной на микроскопическом уровне. До середины 1980-х гг., когда теория струн разрешила этот конфликт, он справедливо считался центральной проблемой современной физики. Более того, теория струн, построенная на основе специальной и общей теории относительности, требует нового серьезного пересмотра наших концепций пространства и времени. Например, большинство из нас считает само собой разумеющимся то, что наша Вселенная имеет три пространственных измерения. Однако, согласно теории струн, это неверно. Теория струн утверждает, что Вселенная имеет гораздо больше измерений, чем доступно нашему глазу, но дополнительные измерения туго скручены и спрятаны в складчатой структуре космического пространства. Эти замечательные гипотезы о структуре пространства и времени играют такую важную роль, что они станут лейтмотивом всего последующего изложения. Теория струн, по существу, отражает историю развития представлений о пространстве и времени в постэйнштейновскую эпоху.

Чтобы понять реальную ценность теории струн, необходимо отступить на шаг назад и кратко описать то, что мы узнали о микроскопической структуре Вселенной в течение XX столетия.

Вселенная в своем самом малом, или что мы знаем о материи

Древние греки предположили, что вещество Вселенной состоит из мельчайших «неделимых» частиц, которые они назвали атомами. Они высказали гипотезу, что точно так же, как в языках алфавитного типа огромное количество слов строится путем комбинации небольшого числа букв, так и огромное разнообразие материальных объектов может быть результатом комбинации небольшого числа различных элементарных строительных блоков. Это было гениальным предвидением. Спустя более 2000 лет мы продолжаем считать его верным, хотя представления о сущности этих фундаментальных строительных блоков неоднократно подвергались пересмотру. В XIX в. ученые показали, что многие обычные вещества, например, кислород и углерод, состоят из мельчайших компонентов, которые, следуя традиции, идущей от греков, были названы атомами. Название сохранилось, но время показало, что оно было неправильным, поскольку атомы определенно являются «делимыми». К началу 1930-х гг. совместными усилиями Дж. Дж. Томсона, Эрнеста Резерфорда, Нильса Бора и Джеймса Чедвика была разработана известная большинству из нас модель строения атома, похожая на солнечную систему. Атомы, которые являются далеко не самыми элементарными частицами материи, состоят из ядра (содержащего протоны и нейтроны), окруженного роем движущихся по орбитам электронов.

В течение некоторого времени многие физики считали, что протоны, нейтроны и электроны являются «атомами» в том смысле, который вкладывали в это слово древние греки. Однако эксперименты, проведенные в 1968 г. на Стэнфордском линейном ускорителе и использовавшие возросшую мощь технологий для изучения глубин микромира, продемонстрировали, что ни протоны, ни нейтроны не являются фундаментальными. Эти эксперименты показали, что они состоят из трех частиц меньшего размера, названных кварками. Это вымышленное название было заимствовано теоретиком Мюрреем Гелл-Манном, предсказавшим существование кварков, из произведения ирландского писателя Джеймса Джойса Поминки по Финнегану. Экспериментаторы установили, что сами кварки делятся на два типа, которые несколько менее изысканно были названы u-кварками и d-кварками. Протон состоит из двух u-кварков и одного d-кварка, а нейтрон — из двух d-кварков и одного u-кварка.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика