Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Чтобы понять это, вспомним, что массы и заряды частиц определяются возможными модами резонансных колебаний струн. Представьте себе крошечную струну, которая движется и колеблется, и вы поймёте, что моды резонансных колебаний подвержены влиянию со стороны окружающего пространства. Подумайте, например, о морских волнах. На бескрайних просторах океана отдельная изолированная волна может иметь любую форму и двигаться в любом направлении. Это очень похоже на колебания струны, движущейся по развёрнутым протяжённым пространственным измерениям. Как указывалось в главе 6, такая струна в любой момент времени может колебаться в любом из протяжённых измерений. Но когда морская волна проходит через более узкий участок, на форму волны будут влиять, например, глубина моря, расположение и форма скал, форма канала, по которому движется вода и т. п. Можно также представить себе органную трубу или валторну. Звук, который может воспроизводить каждый из этих инструментов, непосредственно зависит от резонансной моды колебаний воздуха, проходящего через них, а эта мода определяется формой и размерами каналов в инструменте, через которые движется поток воздуха. Свёрнутые пространственные измерения оказывают аналогичное влияние на возможные моды резонансных колебаний струны. Поскольку крошечные струны колеблются во всех пространственных измерениях, форма, в которую свёрнуты эти дополнительные пространственные измерения, а также форма их взаимного переплетения, сильно влияют и строго ограничивают возможные моды резонансных колебаний. Эти моды, в значительной степени определяемые геометрией дополнительных измерений, формируют набор свойств возможных частиц, наблюдаемых в привычных протяжённых измерениях. Это означает, что геометрия дополнительных измерений определяет фундаментальные физические свойства, такие как массы частиц и заряды, которые мы наблюдаем в нашем обычном трёхмерном пространстве.

Это столь глубокий и важный момент, что мы повторим его ещё раз. Согласно теории струн Вселенная состоит из крошечных струн. Моды резонансных колебаний этих струн определяют, на уровне микромира, массы и константы взаимодействия элементарных частиц. Теория струн также требует существования дополнительных измерений, которые должны быть свёрнуты до очень маленького размера, чтобы не было противоречия с тем фактом, что исследователям до сих пор не удалось их обнаружить. Но крошечные струны могут двигаться в крошечных пространствах. Когда струна перемещается, осциллируя по ходу своего движения, геометрическая форма дополнительных измерений играет решающую роль, определяя моды резонансных колебаний. Поскольку моды резонансных колебаний струн проявляются в виде масс и зарядов элементарных частиц, мы имеем право утверждать, что эти фундаментальные свойства Вселенной в значительной степени определяются размерами и формой дополнительных измерений. Этот результат представляет собой одно из наиболее глубоких следствий теории струн.

Поскольку дополнительные измерения оказывают столь глубокое влияние на фундаментальные физические свойства Вселенной, мы должны с неослабевающей энергией исследовать, как выглядят эти свёрнутые измерения.

Как выглядят свёрнутые измерения?

Дополнительные пространственные измерения теории струн не могут быть свёрнуты произвольным образом: уравнения, следующие из теории струн, существенно ограничивает геометрическую форму, которую они могут принимать. В 1984 г. Филипп Канделас из университета штата Техас в г. Остине, Гари Горовиц и Эндрю Строминджер из университета штата Калифорния в г. Санта-Барбара, а также Эдвард Виттен показали, что этим условиям удовлетворяет один конкретный класс шестимерных геометрических объектов. Они носят название пространств Калаби–Яу(или многообразий Калаби–Яу [11]), в честь двух математиков, Эудженио Калаби из университета штата Пенсильвания и Шин-Туна Яу из Гарвардского университета, исследования которых в близкой области, выполненные ещё до появления теории струн, сыграли центральную роль в понимании этих пространств. Хотя математическое описание пространств Калаби–Яу является довольно сложным и изощрённым, мы можем получить представление о том, как они выглядят, взглянув на рисунок. {65}

Рис. 8.9.Пример пространства Калаби–Яу

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже