Читаем Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории полностью

Здесь можно напомнить о многолетнем здоровом и добром соперничестве между физиками и математиками. Случилось так, что два норвежских математика, Гейр Эллингсруд и Штейн Арилд Штремме, работали над одной из многочисленных задач, которую Канделас и его коллеги успешно решили с использованием зеркальной симметрии. Грубо говоря, задача заключалась в вычислении числа сфер, которые можно упаковать внутрь некоторого пространства Калаби–Яу. Это подобно нашему примеру с подсчётом числа апельсинов в ящике. На семинаре в 1991 г. в Беркли, где собрались физики и математики, Канделас объявил о результате, полученном его группой с использованием теории струн и зеркальной симметрии: 317 206 375. Эллингсруд и Штремме, в свою очередь, объявили о результате своего очень сложного математического вычисления: 2 682 549 425. Несколько дней математики и физики спорили: кто же прав? Вопрос был принципиальным и мог, фактически, служить «лакмусовой бумажкой» для проверки достоверности количественных результатов теории струн. Некоторые даже шутливо замечали, что такая проверка — лучшее, что можно придумать ввиду невозможности проверки теории струн на эксперименте. Кроме того, в результате Канделаса заключалось нечто гораздо большее, чем просто число, каковым это было для Эллингсруда и Штремме. Канделас и его коллеги, кроме того, объявили о решении многих других задач неизмеримо большей сложности, за которые никогда не взялся бы ни один математик. Но можно ли верить результатам теории струн? Семинар закончился плодотворным обменом мнений между математиками и физиками, но причина расхождения результатов так и не была установлена.

Примерно месяц спустя участники семинара в Беркли получили по электронной почте письмо, озаглавленное «Физика победила!». Эллингсруд и Штремме нашли ошибку в своей компьютерной программе, и после её исправления результат совпал с результатом группы Канделаса. С тех пор было проведено немало количественных проверок надёжности расчётов в теории струн с помощью зеркальной симметрии. Теория струн с триумфом прошла все проверки. Ещё позже, почти через десять лет после открытия физиками зеркальной симметрии, математики добились значительных успехов в выявлении математических принципов, лежащих в основе этой симметрии. Используя фундаментальные результаты математиков Максима Концевича, Юрия Манина, Ганга Тиана, Джуна Ли и Александра Гивенталя, Яу и его коллеги Бонг Лиан и Кефенг Лиу нашли, в конце концов, строгое математическое доказательство для обоснования формул, используемых для подсчёта числа сфер внутри пространств Калаби–Яу, разрешив проблемы, которые сотни лет оставались камнем преткновения для математиков.

Эти исследования не просто оказались успешными для конкретного случая, но и выявили ту роль, которую физика начала играть в современной математике. Довольно долгое время физики рылись в архивах математических журналов в поисках средств для построения и анализа моделей физического мира. Сейчас, с открытием теории струн, физика начинает выплачивать свой долг и снабжать математиков новыми мощными подходами к неразрешённым проблемам. Теория струн не только предлагает единое описание физического мира, но и помогает установить глубокий и прочный союз с математикой.

Глава 11. Разрывая ткань пространства

Если непрерывно растягивать резиновую плёнку, рано или поздно она порвётся. Этот простой факт заставлял физиков годами обращаться к вопросу, возможно ли подобное по отношению к ткани пространства, создающего Вселенную. Может ли эта ткань разорваться, или такое вводящее в заблуждение представление есть результат слишком буквального понимания аналогии с резиновой плёнкой?

Общая теория относительности Эйнштейна отвечает на вопрос о возможном разрыве структуры пространства отрицательно. {95}Уравнения общей теории относительности основаны на римановой геометрии, которая, как отмечалось в предыдущей главе, позволяет проанализировать искажения свойств расстояний между соседними точками пространства. Чтобы формулы для расстояний были осмысленными, в математическом формализме требуется гладкостьсамого пространства. Понятие «гладкости» имеет конкретный математический смысл, но общеупотребительное значение слова «гладкость» хорошо передаёт суть этого понятия: гладкий — значит без складок, без проколов, без отдельных «нагромождённых» друг на друга кусков, без разрывов. Если бы в структуре пространства существовали такие нерегулярности, уравнения общей теории относительности нарушались бы, оповещая о космической катастрофе того или иного рода: зловещая перспектива, которую наша Вселенная благоразумно обходит.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже